The microRNA (mir)-374a has been implicated in several types of human cancer; however, its role in diabetic nephropathy (DN) remains unclear. Monocyte chemoattractant protein (MCP)-1 is a chemokine that recruits macrophages to inflammatory sites and is important for the development and progression of DN. However, the relationship between miR-374a and MCP-1 in DN is unknown. We addressed this in the present study by examining the expression of these factors in kidney tissue samples from DN patients and through loss- and gain-of-function experiments using HK2 human renal tubular epithelial cells. We found that miR-374a was downregulated whereas MCP-1 was upregulated in DN tissue. A bioinformatics analysis revealed that MCP-1 is a putative target of miR-374a. To confirm this relationship, HK2 cells treated with normal glucose (5.6 mmol/l D-glucose), high glucose (HG) (30 mmol/l D-glucose), or high osmotic pressure solution (5.6 mmol/l D-glucose + 24.4 mmol/l D-mannitol) were transfected with miR-374a mimic or inhibitor. miR-374a mimic reduced MCP-1 mRNA expression and migration of co-cultured U937 cells, whereas miR-374a inhibition had the opposite effects. Additionally, interleukin-6 and -18 and tumor necrosis factor-α levels were downregulated by transfection of miR-374a mimic. On the other hand, MCP-1 overexpression reversed the inhibitory effects of miR-374a in HK2 cells. Thus, miR-374a suppresses the inflammatory response in DN through negative regulation of MCP-1 expression. These findings suggest that therapeutic strategies that target the miR-374a/MCP-1 axis can be an effective treatment for DN.
Objective: To investigate the correlation between the structure and function alterations of gut microbiota and biochemical indicators in males with hyperuricemia (HUA) and high levels of liver enzymes, in order to provide new evidences and therapeutic targets for the clinical diagnosis and treatment of HUA.Methods: A total of 69 patients with HUA (HUA group) and 118 healthy controls were enrolled in this study. Their age, height, waist circumference, weight, and pressure were measured. The clinical parameters such as fasting plasma glucose (FBG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum uric acid (SUA), serum creatinine (Scr), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), white blood cell (WBC), platelet (PLT), and absolute value of neutrophils (NEUT) were examined. We used whole-genome shotgun sequencing technology and HUMAnN2 MetaCyc pathway database to detect the composition and pathways of the gut microbiota. The main statistical methods were student's t test, chi-square tests, and Wilcoxon rank sum test. The correlations among bacterial diversity, microbial pathways, and biochemical indicators were evaluated by the R function “cor.test” with spearman method.Results: The gut bacterial diversity in HUA group reduced significantly and the community of the microbiota was of significant difference between the two groups. The pathways that can produce 5-aminoimidazole ribonucleotide (PWY-6122, PWY-6277, and PWY-6121), aromatic amino acids, and chorismate (COMPLETE-ARO-PWY, ARO-PWY, and PWY-6163) were enriched in the HUA group; while the pathways that can produce short-chain fatty acids (SCFAs, such as CENTFERM-PWY and PWY-6590) and the gut microbiotas that can produce SCFAs (Roseburia hominis, Odoribacter splanchnicus, Ruminococcus callidus, Lachnospiraceae bacterium 3_1_46FAA, Bacteroides uniformis, Butyricimonas synergistica) and equol (Adlercreutzia equolifaciens) were enriched in healthy controls.Conclusion: The structure and function of the gut microbiota in males with HUA and high levels of liver enzymes have altered apparently. In-depth study of related mechanisms may provide new ideas for the treatment of HUA.
It is predicted that by 2035, metabolic syndrome (MS) will be found in nearly more than half of our adult population, seriously affecting the health of our body. MS is usually accompanied by the occurrence of abnormal liver enzymes, such as elevated gamma-glutamyl transpeptidase (GGT). More and more studies have shown that the gut microbiota is involved in MS; however, the correlation between gut microbiota and MS with elevated GGT has not been studied comprehensively. Especially, there are few reports about its role in the physical examination of the population of men with MS and elevated GGT. By using the whole-genome shotgun sequencing technology, we conducted a genome-wide association study of the gut microbiome in 66 participants diagnosed as having MS accompanied by high levels of GGT (case group) and 66 participants with only MS and normal GGT level (control group). We found that the number of gut microbial species was reduced in participants in the case group compared to that of the control group. The overall microbial composition between the two groups is of significant difference. The gut microbiota in the case group is characterized by increased levels of “harmful bacteria” such as Megamonas hypermegale, Megamonas funiformis, Megamonas unclassified, Klebsiella pneumoniae, and Fusobacterium mortiferum and decreased levels of “beneficial bacteria” such as Faecalibacterium prausnitzii, Eubacterium eligens, Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bacteroides dorei, and Alistipes putredinis. Moreover, the pathways of POLYAMSYN-PWY, ARG+POLYAMINE-SYN, PWY-6305, and GOLPDLCAT-PWY were also increased in the case group, which may play a role in the elevation of GGT by producing amine, polyamine, putrescine, and endogenous alcohol. Taken together, there are apparent changes in the composition of the gut microbiome in men with MS and abnormal GGT levels, and it is high time to discover specific gut microbiome as a potential therapeutic target in that population. More in-depth studies of relevant mechanism could offer some new methods for the treatment of MS with elevated GGT.
Background/Aim: To investigate the role of kidney injury molecular 1 (KIM-1) in high glucose-induced autophagy and apoptosis in renal tubular epithelial cells. Methods: Human renal tubular epithelial cells (HK2) were treated with normal glucose (NG, D -glucose 5.6 mmol/L), high glucose (HG, 30 mmol/L), high osmotic (HO, D-glucose 5.6 mmol/L + D-mannitol 24.4 mmol/L), HG + KIM-1 siRNA, HG + siRNA control. The expressions of KIM-1 and microtubule-associated protein 1 light chain 3II (LC3II) were measured by western blot as well as real time PCR; the number of autophagosome was detected by electron microscopy; and the level of apoptosis was analyzed by flow cytometry. Results: In the HG group, the expressions of KIM-1 and LC3II were increased markedly, which was accompanied by more autophagosome and higher level of apoptosis compared with NG group. Silencing of KIM-1 by siRNA inhibited the increases in the levels of LC3II, autophagosome and apoptosis. Conclusion: KIM-1 may mediate high glucose-induced autophagy and apoptosis in renal tubular epithelial cells.
PurposeIn this study, we examined the changes to the composition and function of the gut microbiota from patients with metabolic dysfunction-associated fatty liver disease (MAFLD).We compared patients in a case group (liver stiffness (LSM) ≥ 7.4 kPa) with a matched control group (LSM < 7.4 kPa) and investigated the correlation between characteristics of the microbiota and other biochemical indicators. MethodsThe study looked at a total of 85 men with MAFLD, 17 of whom were in the case group and 68 of whom were in the control group. We measured waist circumference, blood pressure, and body mass index, as well as clinical parameters including liver stiffness, enzyme levels, cholesterol levels, and fat attenuation. Whole-genome shotgun sequencing technology and the MetaCyc database were then used to detect the composition and major pathways of the gut microbiota for each patient. Statistical analyses were performed, including the chi-square test, the student’s t-test, the Wilcoxon rank-sum test, and the Mann–Whitney test. ResultsWhole-genome sequencing showed that the composition of the gut microbiota in patients with an LSM of above 7.4 kPa was significantly different to that of the control group. There were seven bacterial species that were different between the two groups. Prevotella copri, Phascolarctobacterium succinatutens, Eubacterium biforme, and Collinsella aerofaciens were enriched in the case group (P < 0.05). Conversely, Bacteroides coprocola, Bacteroides stercoris and Clostridiales bacterium 1_7_47FAA were decreased in the case group (P < 0.05). Furthermore, after removing low abundance pathways, a total of 32 microbial pathways were found to be significantly different between the two groups. Most pathways enriched in the case group over the control were related to biosynthesis of metabolites including amino acids, vitamins, nucleosides, and nucleotides. Conclusion. The composition and function of the gut microbiota in patients with increased liver stiffness are significantly altered. This observation may provide new avenues to better understand the mechanism of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.