For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and maintains comparable efficiency of one-stage methods. Re-fineDet consists of two inter-connected modules, namely, the anchor refinement module and the object detection module. Specifically, the former aims to (1) filter out negative anchors to reduce search space for the classifier, and (2) coarsely adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor. The latter module takes the refined anchors as the input from the former to further improve the regression and predict multi-class label. Meanwhile, we design a transfer connection block to transfer the features in the anchor refinement module to predict locations, sizes and class labels of objects in the object detection module. The multitask loss function enables us to train the whole network in an end-to-end way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO demonstrate that RefineDet achieves state-of-the-art detection accuracy with high efficiency. Code is available at https: //github.com/sfzhang15/RefineDet.
This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S 3 FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces. Specifically, we try to solve the common problem that anchorbased detectors deteriorate dramatically as the objects become smaller. We make contributions in the following three aspects: 1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle; 2) improving the recall rate of small faces by a scale compensation anchor matching strategy; 3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-theart detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.
Although tremendous strides have been made in face detection, one of the remaining open challenges is to achieve real-time speed on the CPU as well as maintain high performance, since effective models for face detection tend to be computationally prohibitive. To address this challenge, we propose a novel face detector, named FaceBoxes, with superior performance on both speed and accuracy. Specifically, our method has a lightweight yet powerful network structure that consists of the Rapidly Digested Convolutional Layers (RDCL) and the Multiple Scale Convolutional Layers (MSCL). The RDCL is designed to enable Face-Boxes to achieve real-time speed on the CPU. The MSCL aims at enriching the receptive fields and discretizing anchors over different layers to handle faces of various scales. Besides, we propose a new anchor densification strategy to make different types of anchors have the same density on the image, which significantly improves the recall rate of small faces. As a consequence, the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images. Moreover, the speed of FaceBoxes is invariant to the number of faces. We comprehensively evaluate this method and present stateof-the-art detection performance on several face detection benchmark datasets, including the AFW, PASCAL face, and FDDB. Code is available at https://github.com/ sfzhang15/FaceBoxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.