Collective action is required to deal with various complex agricultural problems such as invasive weeds and plant diseases that pose a collective risk to farmers. Monitoring systems could help to stimulate collective action and avoid free-riding. The paper develops a novel framework consisting of essential elements of a monitoring system for managing a complex disease like bacterial wilt in potato crops. The framework is used to explore how seed potato cooperatives in Ethiopia operationalised the essential elements of a monitoring system and identifies which challenges remain to be overcome. Data were collected through in-depth interviews, reflective workshops, participant observation, and document analysis. We found that the cooperatives had organised a self-monitoring system to monitor disease occurrence and the disease management practices of their members. Monitoring committees were in charge of the data collection and enforcement of sanctions on farmers who did not adhere to the cooperatives’ bylaws. The main challenges included the dependency on visual observation, which does not disclose latent infections, limited financial incentives for the monitoring committee members, lack of trust, weak peer monitoring, and the social and ecological interdependency between producers of ware and seed potatoes. Suggestions are provided to strengthen the monitoring systems of farmers’ seed potato cooperatives in Ethiopia. In addition, we discuss the broader value of our novel framework for describing and analysing monitoring systems for future research and intervention.
Soil acidity is one of the main constraints to crop production worldwide. In Ethiopia, the problem of soil acidity has been increasing. Currently, more than 40% of cultivated land in the country has a soil pH < 5.5. Recently, bacterial wilt (caused by Ralstonia solanacearum) has become a serious problem, reaching epidemic levels in some of the major potato growing districts in the country. However, it is currently unknown if the current outbreak of bacterial wilt in potato production is associated with soil acidification or not. To examine the association between bacterial wilt and soil acidification, we conducted a field survey and field experiments and detected and characterised R. solanacearum strains. The study showed that 50% of potato fields were very strongly acidic (pH 4.5–5.0) and bacterial wilt incidence was higher in potato fields with low soil pH. The field experiments indicated that lime application significantly increased soil pH (p < 0.001) and reduced bacterial wilt incidence (p < 0.001). The more lime was applied, the stronger the positive effect on soil pH and the stronger the reduction in bacterial wilt incidence. Bacterial wilt incidence was on average 10.8% under 12 t/ha lime application, while it was about 40% in control plots (without lime) after 90 days. All R. solanacearum strains isolated from the symptomatic potato plants were Phylotype II. Our findings show that the current outbreak of bacterial wilt in Ethiopia is associated with soil acidification. They add to the understanding of the risk factors for bacterial wilt in potato. Aside from farm hygiene, sanitation and cultural practices, addressing soil acidification using lime needs to be considered as an additional component of an integrated package to deal with bacterial wilt in potato under acidic soil conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.