In our laboratory, we study different factors that influence the microemboli counts in the extracorporeal circuit using a simulated pediatric cardiopulmonary bypass (CPB) model identical to the one used in our operating rooms. For monitoring and classification of microemboli, we use the novel Emboli Detection and Classification (EDAC) Quantifier system which allows for real-time monitoring, localization, and size characterization of microemboli as small as 10 microm. Our results show that high flow rates, low perfusate temperature, use of vacuum assisted venous drainage (VAVD), use of roller pump, and pulsatile flow results in higher microemboli counts at postpump site. Microemboli counts at postoxygenator, and postfilter sites are significantly less. This indicates that hollow fiber membrane oxygenator was able to remove most of the microemboli, and an opened arterial filter purge line augments the removal of microemboli that were not captured by the oxygenator. Majority of the microemboli detected at all sites were <40 microm in size. Based on the results of our studies, we started using the EDAC Quantifier system in our operating rooms at Penn State Hershey Children's Hospital. More basic science studies and clinical outcome data are needed for further study in minimizing the adverse effects of pediatric CPB procedure.
The objective of this study was to compare the systemic inflammatory response and hemolytic characteristics of a conventional roller pump (HL20-NP) and an alternative diagonal pump with nonpulsatile (DP3-NP) and pulsatile mode (DP3-P) in simulated neonatal extracorporeal life support (ECLS) systems. The experimental neonatal ECLS circuits consist of a conventional Jostra HL20 roller pump or an alternative Medos DP3 diagonal pump, and Medos Hilite 800 LT hollow-fiber oxygenator with diffusion membrane. Eighteen sterile circuits were primed with freshly donated whole blood and divided into three groups: conventional HL20 with nonpulsatile flow (HL20-NP), DP3 with nonpulsatile flow (DP3-NP), and DP3 with pulsatile flow (DP3-P). All trials were conducted for durations of 12 h at a flow rate of 500 mL/min at 36°C. Simultaneous blood flow and pressure waveforms were recorded. Blood samples were collected to measure plasma-free hemoglobin (PFH), human tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-8, in addition to the routine blood gas, lactate dehydrogenase, and lactic acid levels. HL20-NP group had the highest PFH levels (mean ± standard error of the mean) after a 12-h ECLS run, but the difference among groups did not reach statistical significance (HL20-NP group: 907.6 ± 253.1 mg/L, DP3-NP group: 343.7 ± 163.2 mg/L, and DP3-P group: 407.6 ± 156.6 mg/L, P = 0.06). Although there were similar trends but no statistical differences for the levels of proinflammatory cytokines among the three groups, the HL20-NP group had much greater levels than the other groups (P > 0.05). Pulsatile flow generated higher total hemodynamic energy and surplus hemodynamic energy levels at pre-oxygenator and pre-clamp sites (P < 0.01). Our study demonstrated that the alternative diagonal pump ECLS circuits appeared to have less systemic inflammatory response and hemolysis compared with the conventional roller pump ECLS circuit in simulated neonatal ECLS systems. Pulsatile flow delivered more hemodynamic energy to the pseudo-patient without increased odds of hemolysis compared with the conventional, nonpulsatile roller pump group.
The objective of this study is to investigate the impact of every component of extracorporeal life support (ECLS) circuit on hemodynamic energy transmission in terms of energy equivalent pressure (EEP), total hemodynamic energy (THE), and surplus hemodynamic energy (SHE) under nonpulsatile and pulsatile modes in a novel ECLS system. The ECLS circuit consisted of i-cor diagonal pump and console (Xenios AG, Heilbronn, Germany), an iLA membrane ventilator (Xenios AG), an 18 Fr femoral arterial cannula, a 23/25 Fr femoral venous cannula, and 3/8-in ID arterial and venous tubing. The circuit was primed with lactated Ringer's solution and human whole blood (hematocrit 33%). All trials were conducted under room temperature at the flow rates of 1-4 L/min (1 L/min increments). The pulsatile flow settings were set at pulsatile frequency of 75 beats per minute and differential speed values of 1000-4000 rpm (1000 rpm increments). Flow and pressure data were collected using a custom-based data acquisition system. EEP was significantly higher than mean arterial pressure in all experimental conditions under pulsatile flow (P < 0.01). THE was also increased under pulsatile flow compared with the nonpulsatile flow (P < 0.01). Under pulsatile flow conditions, SHE was significantly higher and increased differential rpm resulted in significantly higher SHE (P < 0.01). There was no SHE generated under nonpulsatile flow. Energy loss depending on the circuit components was almost similar in both perfusion modes at all different flow rates. The pressure drops across the oxygenator were 3.8-24.9 mm Hg, and the pressure drops across the arterial cannula were 19.3-172.6 mm Hg at the flow rates of 1-4 L/min. Depending on the pulsatility setting, i-cor ECLS system generates physiological quality pulsatile flow without increasing the mean circuit pressure. The iLA membrane ventilator is a low-resistance oxygenator, and allows more hemodynamic energy to be delivered to the patient under pulsatile mode. The 18 Fr femoral arterial cannula has acceptable pressure drops under nonpulsatile and pulsatile modes. Further in vivo studies are warranted to confirm these results.
The primary objective of this study was to evaluate a novel electrocardiogram (ECG)-synchronized pulsatile extracorporeal life support (ECLS) system for adult partial mechanical circulatory support for adequate quality of pulsatility and enhanced hemodynamic energy generation in an in vivo animal model. The secondary aim was to assess end-organ protection during nonpulsatile versus synchronized pulsatile flow mode. Ten adult swine were randomly divided into a nonpulsatile group (NP, n = 5) and pulsatile group (P, n = 5), and placed on ECLS for 24 h using an i-cor system consisting of an i-cor diagonal pump, an iLA membrane ventilator, an 18 Fr femoral arterial cannula and a 23/25 Fr femoral venous cannula. Trials were conducted at a flow rate of 2.5 L/min using nonpulsatile or pulsatile mode (with assist ratio 1:1). Real-time pressure and flow data were recorded using a custom-based data acquisition system. To the best of our knowledge, the oxygenator and circuit pressure drops were the lowest for any available system in both groups. The ECG-synchronized i-cor ECLS system was able to trigger pulsatile flow in the porcine model. After 24-h ECLS, energy equivalent pressure, surplus hemodynamic energy, and total hemodynamic energy at preoxygenator and prearterial cannula sites were significantly higher in the P group than those in the NP group (P < 0.05). Urine output was higher in P versus NP (3379 ± 443 mL vs. NP, 2598 ± 1012 mL), and the P group seemed to require less inotropic support, but both did not reach statistical significances (P > 0.05). The novel i-cor system performed well in the nonpulsatile and ECG-synchronized pulsatile mode in an adult animal ECLS model. The iLA membrane oxygenator had an extremely lower transmembrane pressure gradient and excellent gas exchange capability. Our findings suggest that ECG-triggered pulsatile ECLS provides superior end-organ protection with improved renal function and systemic vascular tone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.