We present various versions of generalized Aleksandrov-Bakelman-Pucci (ABP) maximum principle for L p -viscosity solutions of fully nonlinear second-order elliptic and parabolic equations with possibly superlinear-growth gradient terms and unbounded coefficients. We derive the results via the "iterated" comparison function method, which was introduced in our previous paper (Koike andŚwie ch in Nonlin.
Abstract. In this paper we obtain regularity results for elliptic integrodifferential equations driven by the stronger effect of coercive gradient terms. This feature allows us to construct suitable strict supersolutions from which we conclude Hölder estimates for bounded subsolutions. In many interesting situations, this gives way to a priori estimates for subsolutions. We apply this regularity results to obtain the ergodic asymptotic behavior of the associated evolution problem in the case of superlinear equations. One of the surprising features in our proof is that it avoids the key ingredient which are usually necessary to use the Strong Maximum Principle: linearization based on the Lipschitz regularity of the solution of the ergodic problem. The proof entirely relies on the Hölder regularity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.