Background: Bovine papillomavirus types 1 and 2 (BPV1/2) infection in horses has been associated with the development of equine sarcoids. Previous findings revealed the presence of sarcoid-associated BPV sequence variants that have been proposed as a key factor of cross-species infection in horses. To verify this hypothesis, sarcoidassociated BPV variants should be identified regardless of geographic location.Objectives: Sequence analyses of BPV1/2 derived from both horses and cattle were conducted to clarify the sarcoid-associated sequence variants. The aim of this study was to clarify the correlation between BPV phylogeny and the geographic origin/ host species. Study design:Cross-sectional study.Methods: Conventional PCR to detect BPV1/2 was performed with genomic DNA extracted from equine sarcoid (n = 10) and bovine papilloma (n = 10) samples collected in Japan. Direct sequencing results were compared between equine and bovine (equine/bovine)-derived BPV to identify sarcoid-associated variants of two early regions (E2, E5), one late region (L1) and the long control region (LCR). Phylogenetic and phylogeny-trait correlation were analysed using Bayesian Markov chain Monte Carlo (MCMC) method and Bayesian tip-association significance testing (BaTS).Results: Seven BPV1 and three BPV2 were identified from equine sarcoids using PCR and direct sequencing. Sequence analysis of equine/bovine-derived samples showed no sarcoid-associated variants in four regions (E2, E5, L1 and LCR) of either BPV1 or BPV2. The phylogenetic tree of BPV1 E2, L1 and LCR tended to cluster within its geographic origins. BaTS analysis demonstrated that BPV1 sequence variability may be due to the geographic origin rather than host species difference. Main limitations:There was a limitation in sample numbers. Conclusions:This study supports the geographic-specific hypothesis of sequence variability, suggesting that BPV1 is shared between local equids and bovids. However, more extensively collected sequences worldwide and functional evaluations are needed to verify the geographic-specific sequence variability of BPV1/2 between equine-and bovine-derived sequence.
The 3,339 base pair (bp) sequences encoding a putative open reading frame (ORF), non-coding promoter and leader regions (approximately 320 bp), full-length 16S ribosomal RNA (rRNA) gene (approximate 1,540 bp) and part of the 16S-23S rDNA internal spacer region (ISR) were determined from genome DNA libraries of the Taylorella asinigenitalis (UK-1) isolate. The non-coding promoter and leader regions included antiterminators (boxB, boxA and boxC) immediately upstream of the 16S rRNA gene sequence. An approximately 680 bp region upstream of the non-coding promoter region appears to contain a putative ORF with high sequence similarity to GTP cyclohydrolase I. In addition, a typical order of intercistronic tRNA genes with the 48 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in a part of the 16S-23S rDNA ISR. The antiterminators of boxB and boxA were also identified in the ISR.A phylogenetic analysis based on the 16S rRNA gene sequence information clearly demonstrated that the five T. asinigenitalis isolates formed a cluster together with the three T. equigenitalis strains, more similar to Pelistega europaea than the other beta-Proteobacteria from the 13 species of 11 genera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.