A novel magnetocardiographic inverse method for reconstructing the action potential amplitude (APA) and the activation time (AT) on the ventricular myocardium is proposed. This method is based on the propagated excitation model, in which the excitation is propagated through the ventricle with nonuniform height of action potential. Assumption of stepwise waveform on the transmembrane potential was introduced in the model. Spatial gradient of transmembrane potential, which is defined by APA and AT distributed in the ventricular wall, is used for the computation of a current source distribution. Based on this source model, the distributions of APA and AT are inversely reconstructed from the QRS interval of magnetocardiogram (MCG) utilizing a maximum a posteriori approach. The proposed reconstruction method was tested through computer simulations. Stability of the methods with respect to measurement noise was demonstrated. When reference APA was provided as a uniform distribution, root-mean-square errors of estimated APA were below 10 mV for MCG signal-to-noise ratios greater than, or equal to, 20 dB. Low-amplitude regions located at several sites in reference APA distributions were correctly reproduced in reconstructed APA distributions. The goal of our study is to develop a method for detecting myocardial ischemia through the depression of reconstructed APA distributions.
Purpose:We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them.Methods:Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (Ktrans) for transfer from plasma to the extravascular extracellular space. Ktrans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of Ktrans and cCBV were investigated. The differences in Ktrans, cCBV, and Ktrans/cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of Ktrans, cCBV, and Ktrans/cCBV ratio was performed.Results:The 30th percentile (C30) in Ktrans and 80th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 Ktrans, and significantly higher C30 Ktrans/C80 cCBV than those of HGG. In ROC analysis, C30 Ktrans/C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 Ktrans or C80 cCBV.Conclusion:The combination of Ktrans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either Ktrans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between CNSL and HGG.
Purpose: To directly compare the utility for therapeutic outcome prediction of dynamic first-pass contrast-enhanced (CE)-perfusion area-detector computed tomography (ADCT), MR imaging assessed with the same mathematical method and 2-[fluorine-18]-fluoro-2-deoxy-d-glucose-positron emission tomography combined with CT (PET/CT) for non-small cell lung cancer (NSCLC) patients treated with chemoradiotherapy. Materials and Methods:Forty-three consecutive stage IIIB NSCLC patients, consisting of 25 males (mean age ± standard deviation: 66.6 ± 8.7 years) and 18 females (66.4 ± 8.2 years) underwent PET/CT, dynamic CE-perfusion ADCT and MR imaging, chemoradiotherapy, and follow-up examination. In each patient, total, pulmonary arterial, and systemic arterial perfusions were calculated from both perfusion data and SUV max on PET/CT, assessed for each targeted lesion, and averaged to determine final values. Receiver operating characteristics analyses were performed to compare the utility for distinguishing responders from non-responders using Response Evaluation Criteria in Solid Tumor (RECIST) 1.1 criteria. Overall survival (OS) assessed with each index were compared between two groups by means of the Kaplan-Meier method followed by the log-rank test.Results: Area under the curve (Az) for total perfusion on ADCT was significantly larger than that of pulmonary arterial perfusion (P < 0.05). Az of total perfusion on MR imaging was significantly larger than that of pulmonary arterial perfusion (P < 0.05). Mean OS of responder and non-responder groups were significantly different for total and systemic arterial (P < 0.05) perfusion. Conclusion:Dynamic first-pass CE-perfusion ADCT and MR imaging as well as PET/CT are useful for early prediction of treatment response by NSCLC patients treated with chemoradiotherapy.
We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced (DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.Methods: Histologically proven benign and malignant mass lesions of DCE MRI were enrolled retrospectively. Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign, 35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth (S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses were classified into malignant or benign using two thresholds on a feature pair. On the training set, several feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity with the restriction of NPV > 98%. NPV and specificity were computed using the testing set by comparison with histopathologic results and averaged on the selected feature pairs. Results:In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and specificity (40.0%) in visually assessed MRI category-based diagnosis. Conclusion:We, therefore, suggest that the NPV of our texture-based features method described performs similarly to or greater than the NPV of the MRI category-based diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.