A microdose study of metformin was conducted to investigate the predictability of drug-drug interactions at the therapeutic dose (ThD). Healthy subjects received a microdose (100 µg) or ThD (250 mg) of metformin orally, with or without a potent and competitive multidrug and toxin extrusion (MATE) inhibitor, pyrimethamine (50 mg, p.o.), in a crossover fashion. Pyrimethamine significantly reduced the renal clearance of metformin by 23 and 35% at the microdose and ThD, respectively. At ThD, but not at microdose, it caused significant increases in the maximum concentration (C(max)) and area under the plasma concentration-time curve (AUC) of metformin (142 and 139% of control values, respectively). Human canalicular membrane vesicles showed pyrimethamine-inhibitable metformin uptake. Pyrimethamine did not affect plasma lactate/pyruvate after ThD of metformin but significantly reduced the renal clearance of creatinine, thereby causing elevation of plasma creatinine level. This microdose study quantitatively predicted a drug-drug interaction involving the renal clearance of metformin at ThD by pyrimethamine. Pyrimethamine is a useful in vivo inhibitor of MATE proteins.
Multidrug and toxin extrusion 1 (MATE1) and MATE2-K are H(+)/organic cation exchangers mediating the efflux of cationic drugs into the urine. N-methylnicotinamide (NMN) was found to be an endogenous substrate of MATE1 (Michaelis constant (K(m)) 301 ± 18 µmol/l) and MATE2-K (K(m) 422 ± 63 µmol/l) as well as a basolateral influx transporter, organic cation transporter 2 (K(m) 318 ± 29 µmol/l). A potent MATE inhibitor, pyrimethamine, competitively inhibited the uptake by MATE1 and MATE2-K with inhibition constant (K(i)) values of 83 ± 15 and 56 ± 11 nmol/l, respectively. The uptake of NMN by human kidney brush border membrane vesicles with a H(+) gradient was saturable (K(m) 360 ± 55 µmol/l) and completely inhibited by pyrimethamine. The renal clearance of endogenous NMN was 403 ± 61 in healthy male subjects, and it was significantly decreased to 119 ± 16 ml/min/kg by an oral dose of pyrimethamine (50 mg). These results support the utility of NMN as an endogenous in vivo probe for investigating MATE1 and MATE2-K in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.