The fibrillar collagen network is postulated to be a primary determinant of left ventricular diastolic stiffness. This hypothesis was tested by examining the structural and physiological effects of a reduction in fibrillar collagen content and cross-linking in the intact left ventricle. Collagen cross-linking was inhibited by treating five normal adult pigs with beta-aminopropionitrile (BAPN; 10 g/day po) for 6 wk; five normal untreated pigs served as controls. Left ventricular volume, mass, and function were determined by simultaneous echocardiography and catheterization. Chamber stiffness, defined by pressure vs. volume data, and myocardial stiffness, defined by stress vs. dimension data, were determined from variably loaded beats during dextran infusion. Collagen distribution (% area) and integrity (% confluence) were determined by light microscopy. Collagen content was measured by hydroxyproline assay, and collagen cross-linking was measured by salt extraction. BAPN decreased collagen distribution (% area decreased from 12 +/- 1% in control to 7 +/- 1% in BAPN, P < 0.05), collagen integrity (% confluence decreased from 8 +/- 1% in control to 4 +/- 1% in BAPN, P < 0.05), collagen content (from 36 +/- 2 mg/g dry wt in control to 27 +/- 2 mg/g dry wt in BAPN, P < 0.05), and collagen cross-linking (extractable collagen increased from 21 +/- 2% in control to 28 +/- 2% in BAPN, P < 0.05). BAPN decreased chamber stiffness (0.13 +/- 0.02 in control to 0.06 +/- 0.01 in BAPN, P < 0.05) and myocardial stiffness (10.4 +/- 0.5 in control to 6.6 +/- 0.5 in BAPN, P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
In 2005, OA in the biomedical field was achieved under an umbrella of existing scholarly communication systems. Typically, OA articles were published as part of subscription journals published by scholarly societies. OA journals published by BioMed Central contributed to a small portion of all OA articles.
Single portal endoscopic carpal tunnel release was carried out in 107 hands of 88 patients. There were 11 complications. These included incomplete release (2), post operative scarring around the median and ulnar nerves (2), laceration of the superficial palmar arterial arch (1), reflex sympathetic dystrophy (2), palmar fasciitis (1), and wound inflammation (3). In two cases there was no relief of symptoms. In one there was incorrect diagnosis and in another, incorrect indication for endoscopic carpal tunnel release. The follow-up was from 3 to 18 months with an average of 6.8 months. The overall results of the patients in this series are being presented in another paper. Of the 107 procedures, 73 were rated as having an excellent, 25 good, three fair, and six poor results. The case of laceration of the superficial palmar arterial arch is discussed in detail in the paper. The two cases of reflex sympathetic dystrophy and the one case of palmar fasciitis had mild clinical features and resolved within 3 months. The inflammation in three of the wounds at the wrist resolved within 2 days of removal of the percutaneous sutures. These three patients had returned to heavy hand activities within a few days of surgery.
Aims Calcific aortic valve stenosis (CAVS) is the most common valvular heart disease and is increased with elderly population. However, effective drug therapy has not been established yet. This study aimed to investigate the role of microRNAs (miRs) in the development of CAVS. Methods and results We measured the expression of 10 miRs, which were reportedly involved in calcification by using human aortic valve tissue from patients who underwent aortic valve replacement with CAVS or aortic regurgitation (AR) and porcine aortic valve interstitial cells (AVICs) after treatment with osteogenic induction medium. We investigated whether a specific miR-inhibitor can suppress aortic valve calcification in wire injury CAVS mice model. Expression of miR-23a, miR-34a, miR-34c, miR-133a, miR-146a, and miR-155 was increased, and expression of miR-27a and miR-204 was decreased in valve tissues from CAVS compared with those from AR. Expression of Notch1 was decreased, and expression of Runt-related transcription factor 2 (Runx2) was increased in patients with CAVS compared with those with AR. We selected miR-34a among increased miRs in porcine AVICs after osteogenic treatment, which was consistent with results from patients with CAVS. MiR-34a increased calcium deposition in AVICs compared with miR-control. Notch1 expression was decreased, and Runx2 expression was increased in miR-34a transfected AVICs compared with that in miR-control. Conversely, inhibition of miR-34a significantly attenuated these calcification signals in AVICs compared with miR-control. RNA pull-down assay revealed that miR-34a directly targeted Notch1 expression by binding to Notch1 mRNA 3′ untranslated region. In wire injury CAVS mice, locked nucleic acid miR-34a inhibitor suppressed aortic velocity, calcium deposition of aortic valves, and cardiac hypertrophy, which were involved in decreased Runx2 and increased Notch1 expressions. Conclusion miR-34a plays an important role in the development of CAVS via Notch1–Runx2 signalling pathway. Inhibition of miR-34a may be the therapeutic target for CAVS.
Hypertension is a major public health problem among the aging population worldwide. It causes cardiac remodeling, including hypertrophy and interstitial fibrosis, which leads to development of hypertensive heart disease (HHD). Although microRNA-21 (miR-21) is associated with fibrogenesis in multiple organs, its contribution to cardiac remodeling in hypertension is poorly understood. Circulating miR-21 level was higher in patients with HHD than that in the control subjects. It also positively correlated with serum myocardial fibrotic markers. MiR-21 expression levels were significantly upregulated in the mice hearts after angiotensin II (Ang II) infusion or transverse aortic constriction (TAC) compared with control mice. Expression level of programmed cell death 4 (PDCD4), a main target of miR-21, was significantly decreased in Ang II infused mice and TAC mice compared with control mice. Expression levels of transcriptional activator protein 1 (AP-1) and transforming growth factor-β1 (TGF-β1), which were downstream targets of PDCD4, were increased in Ang II infused mice and TAC mice compared with control mice. In vitro, mirVana-miR-21-specific inhibitor attenuated Ang II-induced PDCD4 downregulation and contributed to subsequent deactivation of AP-1/TGF-β1 signaling pathway in neonatal rat cardiomyocytes. Thus, suppression of miR-21 prevents hypertrophic stimulation-induced cardiac remodeling by regulating PDCD4, AP-1, and TGF-β1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.