Affinity purified Shiga toxin 2 (Stx2) i.p. to mice caused weight loss and hind limb paralysis followed by death. Globotriaosylceramide (Gb3), the receptor for Stx2, was localized to neurons of the central nervous system (CNS) of normal mice. Gb3 was not found in astrocytes nor endothelial cells of the CNS. In human cadaver CNS, we found Gb3 in neurons and endothelial cells. Mouse Gb3 localization was confirmed by immuno-electron microscopy (EM). In Stx2 exposed mice, anti-Stx2-gold immunoreaction was positive in neurons. During paralysis, following Stx2 injection, multiple glial nuclei were observed by EM surrounding motoneurons. Also revealed was a lamellipodia-like process physically inhibiting the synaptic connection of motoneurons. Ca2+ imaging of cerebral astrocytic endfeet in Stx2 treated mouse brains suggested the toxin increased neurotransmitter release from neurons. In this report, we propose that the neuron is a primary target of Stx2, affecting neuronal function which leads to paralysis.
The third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope gp120 subunit participates in determination of viral infection coreceptor tropism and host humoral immune responses. Positive charge of the V3 plays a key role in determining viral coreceptor tropism. Here, we examined by bioinformatics, experimental, and protein modelling approaches whether the net positive charge of V3 sequence regulates viral sensitivity to humoral immunity. We chose HIV-1 CRF01_AE strain as a model virus to address the question. Diversity analyses using CRF01_AE V3 sequences from 37 countries during 1984 and 2005 (n = 1361) revealed that reduction in the V3's net positive charge makes V3 less variable due to limited positive selection. Consistently, neutralization assay using CRF01_AE V3 recombinant viruses (n = 30) showed that the reduction in the V3's net positive charge rendered HIV-1 less sensitive to neutralization by the blood anti-V3 antibodies. The especially neutralization resistant V3 sequences were the particular subset of the CCR5-tropic V3 sequences with net positive charges of +2 to +4. Molecular dynamics simulation of the gp120 monomers showed that the V3's net positive charge regulates the V3 configuration. This and reported gp120 structural data predict a less-exposed V3 with a reduced net positive charge in the native gp120 trimer context. Taken together, these data suggest a key role of the V3's net positive charge in the immunological escape and coreceptor tropism evolution of HIV-1 CRF01_AE in vivo. The findings have molecular implications for the adaptive evolution and vaccine design of HIV-1.
BackgroundShiga toxins (Stxs) are the major agents responsible for hemorrhagic colitis and hemolytic-uremic syndrome (HUS) during infections caused by Stx-producing Escherichia coli (STEC) such as serotype O157:H7. Central nervous system (CNS) involvement is an important determinant of mortality in diarrhea associated-HUS. It has been suggested that vascular endothelial injuries caused by Stxs play a crucial role in the development of the disease. The current study investigates the relationship between the cytotoxic effects of Stxs and inflammatory responses in a rabbit brain treated with Stx2.MethodsIn a rabbit model treated with purified Stx2 or PBS(-), we examined the expression of the Stx receptor globotriaosylceramide (Gb3)/CD77 in the CNS and microglial activation using immunohistochemistry. The relationship between inflammatory responses and neuronal cell death was analyzed by the following methods: real time quantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) to determine the expression levels of pro-inflammatory cytokines, and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method to detect apoptotic changes.ResultsGb3/CD77 expression was detected in endothelial cells but not in neurons or glial cells. In the spinal cord gray matter, significant levels of Gb3/CD77 expression were observed. Severe endothelial injury and microvascular thrombosis resulted in extensive necrotic infarction, which led to acute neuronal damage. Conversely, in the brain, Stx receptor expression was much lower. The observed neuropathology was less severe. However, neuronal apoptosis was observed at the onset of neurological symptoms, and the number of apoptotic cells significantly increased in the brain at a later stage, several days after onset. Microglial activation was observed, and tumor necrosis factor (TNF)-α and interleukin (IL)-1β mRNA in the CNS parenchyma was significantly up-regulated. There was significant overexpression of TNF-α transcripts in the brain.ConclusionThis study indicates that Stx2 may not directly damage neural cells, but rather inflammatory responses occur in the brain parenchyma in response to primary injury by Stx2 in vascular endothelial cells expressing Gb3/CD77. These findings suggest that neuroinflammation may play a critical role in neurodegenerative processes during STEC infection and that anti-inflammatory intervention may have therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.