The conventional two-dimensional (2D) culture is available as an in vitro experimental model. However, the culture system reportedly does not recapitulate the in vivo cancer microenvironment. We recently developed a tissueoid cell culture system using Cellbed, which resembles the loose connective tissue in living organisms. The present study performed 2D and three-dimensional (3D) culture using prostate and bladder cancer cell lines and a comprehensive metabolome analysis. Compared to 3D, the 2D culture had significantly lower levels of most metabolites. The 3D culture system did not impair mitochondrial function in the cancer cells and produce energy through the mitochondria simultaneously with aerobic glycolysis. Conversely, ATP production, biomass (nucleotides, amino acids, lipids and NADPH) synthesis and redox balance maintenance were conducted in 3D culture. In contrast, in 2D culture, biomass production was delayed due to the suppression of metabolic activity. The 3D metabolome analysis using the tissueoid cell culture system capable of in vivo cancer cell culture yielded results consistent with previously reported cancer metabolism theories. This system is expected to be an essential experimental tool in a wide range of cancer research fields, especially in preclinical stages while transitioning from in vitro to in vivo.
γ-Glutamylcyclotransferase (GGCT), which is one of the major enzymes involved in glutathione metabolism, is upregulated in a wide range of cancers—glioma, breast, lung, esophageal, gastric, colorectal, urinary bladder, prostate, cervical, ovarian cancers and osteosarcoma—and promotes cancer progression; its depletion leads to the suppression of proliferation, invasion, and migration of cancer cells. It has been demonstrated that the suppression or inhibition of GGCT has an antitumor effect in cancer-bearing xenograft mice. Based on these observations, GGCT is now recognized as a promising therapeutic target in various cancers. This review summarizes recent advances on the mechanisms of the antitumor activity of GGCT inhibition.
Patients with a history of non-muscle-invasive bladder cancer sometimes have recurrence of tumors after transurethral resection of bladder tumor treatment. To find factors related to the recurrence of non-muscle-invasive bladder cancer, we examined tissue specimens taken at transurethral resection of bladder tumor as an initial treatment. We revealed the association between prognosis of non-muscle-invasive bladder cancer and infiltration of Foxp3+ T cells that suppress anti-tumor immunity in 115 primary non-muscle-invasive bladder cancer patients retrospectively identified and followed for at least 3 months after primary transurethral resection. In immunohistological staining, we counted the number of cells positive for CD3 and positive for CD3 and Foxp3 together and calculated the percentage of Foxp3+ T cells among the CD3+ T cells. The recurrence-free survival rate was calculated by the Kaplan-Meier method, and a Cox regression analysis of recurrence factors was performed. The median (interquartile range) percentage of Foxp3+ T cells in all cases was 17.1% (11.9, 11.4–23.3%). Compared by risk stratification, it was 11.4% (10.4, 7.8–18.2%) in the low-risk group (n = 32), 16.8% (12.6, 11.6–24.2%) in the intermediate-risk group (n = 45), and 22.0% (9.7, 16.4–26.1%) in the high-risk group (n = 38). The Kaplan-Meier survival analysis indicated that the Foxp3+ T cell high group (≥ 17.1%) had a worse RFS rate than did the low group (< 17.1%) (P = 0.006). In multivariate analysis, the percentage of Foxp3+ T cells was an independent risk factor for intravesical recurrence (hazard ratio 2.25). Thus, peritumoral Foxp3+ T cell infiltration was correlated to risk stratification and recurrence-free survival. Therefore, the percentage of Foxp3+ T cells in tumor specimens may predict a risk for intravesical recurrence.
BackgroundThis study was conducted to determine whether the location of the bladder neck in postoperative cystography predicts recovery of continence after radical prostatectomy.MethodsBetween 2008 and 2015, 203 patients who underwent laparoscopic radical prostatectomy (LRP, n = 99) and robot assisted radical prostatectomy (RARP, n = 104) were analyzed. The location of the bladder neck was visualized by postoperative routine cystography, and quantitative evaluation of the bladder neck position was performed according to the bladder neck to pubic symphysis (BNPS) ratio proposed by Olgin et al. (J Endourol, 2014). Recovery of continence was defined as no pad use or one security pad per day. To determine the predictive factors for recovery of continence at 1, 3, 6 and 12 months, several parameters were analyzed using logistic regression analysis, including age (≤68 vs. > 68, BMI (≤23.4 vs. > 23.4 kg/m2), surgical procedure (LRP vs. RARP), prostate volume (≤38 vs. > 38 mL), nerve-sparing technique, vesico-urethral anastomosis leakage, and BNPS ratio (≤0.59 vs. > 0.59).ResultsThe mean postoperative follow-up was 1131 days (79–2880). At 1, 3, 6 and 12 months after surgery, continence recovery rates were 25, 53, 68 and 81%, respectively. Although older age (> 68) and RARP were significant risk factors for incontinence within 3 months, neither was significant after 6 months. A high BNPS ratio (> 0.59) was the only significant risk factor for the persistence of incontinence at all observation points, up to 12 months.ConclusionsA lower bladder neck position after prostatectomy predicts prolonged incontinence.Electronic supplementary materialThe online version of this article (10.1186/s12894-018-0370-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.