Influenza A viruses cause recurrent outbreaks of local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On June 11, 2009, the WHO declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses1. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) appear to be mild; however, more than 50% of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To better assess the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in nonhuman primates, causes more severe pathologic lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting these compounds as a first line of defence against the recently declared S-OIV pandemic.
T cell receptor (TCR) recognition of peptide–major histocompatibility complex antigens can elicit a diverse array of effector activities. Here we simultaneously analyze TCR engagement and the production of multiple cytokines by individual cells in a clonal Th1 CD4+ cell population. Low concentrations of TCR ligand elicit only interferon-γ (IFN-γ) production. Increasing ligand recruits more cells into the IFN-γ+ pool, increases IFN-γ produced per cell, and also elicits IL-2, but only from cells already making IFN-γ. Most cells producing only IFN-γ show less TCR downmodulation than cells producing both cytokines, consistent with a requirement for more TCR signaling to elicit IL-2 than to evoke IFN-γ synthesis. These studies emphasize the hierarchical organization of TCR signaling thresholds for induction of distinct cytokine responses, and demonstrate that this threshold phenomenon applies to individual cells. The existence of such thresholds suggests that antigen dose may dictate not only the extent, but also the quality of an immune response, by altering the ratios of the cytokines produced by activated T cells. The quantitative relationships in this response hierarchy change in response to costimulation through CD28 or LFA-1, as well as the differentiation state of the lymphocyte, explaining how variations in these parameters in the face of a fixed antigen load can qualitatively influence immune outcomes. Finally, although the IFN-γ/IL-2 hierarchy is seen with most cells, among cells with the greatest TCR downmodulation, some produce only IFN-γ and not IL-2, and the amount of IFN-γ exceeds that in double producers. Thus, these single cell analyses also provide clear evidence of nonquantitative intraclonal heterogeneity in cytokine production by long-term Th1 cells, indicating additional complexity of T cell function during immune responses.
Mature APCs play a key role in the induction of Ag-specific immunity. This work examines whether genomic DNA released by dying cells provides a stimulus for APC maturation. Double-stranded but not single-stranded genomic DNA triggered APC to up-regulate expression of MHC class I/II and various costimulatory molecules. Functionally, dsDNA enhanced APC function in vitro and improved primary cellular and humoral immune responses in vivo. These effects were dependent on the length and concentration of the dsDNA but were independent of nucleotide sequence. The maturation of APC induced by dsDNA may promote host survival by improving immune surveillance at sites of tissue injury/infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.