Type I interferons are central mediators for antiviral responses. Using high-throughput functional screening of interferon inducers, we have identified here a molecule we call interferon-beta promoter stimulator 1 (IPS-1). Overexpression of IPS-1 induced type I interferon and interferon-inducible genes through activation of IRF3, IRF7 and NF-kappaB transcription factors. TBK1 and IKKi protein kinases were required for the IPS-1-mediated interferon induction. IPS-1 contained an N-terminal CARD-like structure that mediated interaction with the CARD of RIG-I and Mda5, which are cytoplasmic RNA helicases that sense viral infection. 'Knockdown' of IPS-1 by small interfering RNA blocked interferon induction by virus infection. Thus, IPS-1 is an adaptor involved in RIG-I- and Mda5-mediated antiviral immune responses.
Toll-like receptors (TLRs) are involved in the recognition of microbial pathogens. A subset of TLRs, TLR7, TLR8 and TLR9, induces antiviral responses by producing interferon-alpha (IFN-alpha). Production of IFN-alpha is dependent on the Toll-interleukin-1 receptor domain-containing adaptor MyD88. Here we show that MyD88 formed a complex with the transcription factor IRF7 but not with IRF3. The death domain of MyD88 interacted with an inhibitory domain of IRF7, and this interaction resulted in activation of the IFN-alpha-dependent promoters. Furthermore, the adaptor molecule TRAF6 also bound and activated IRF7. Ubiquitin ligase activity of TRAF6 was required for IRF7 activation. These results indicate that TLR-mediated IFN-alpha induction requires the formation of a complex consisting of MyD88, TRAF6 and IRF7 as well as TRAF6-dependent ubiquitination.
The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-beta through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-kappaB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-beta and NF-kappaB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.
Malaria parasites within red blood cells digest host hemoglobin into a hydrophobic heme polymer, known as hemozoin (HZ), which is subsequently released into the blood stream and then captured by and concentrated in the reticulo-endothelial system. Accumulating evidence suggests that HZ is immunologically active, but the molecular mechanism(s) through which HZ modulates the innate immune system has not been elucidated. This work demonstrates that HZ purified from Plasmodium falciparum is a novel non-DNA ligand for Toll-like receptor (TLR)9. HZ activated innate immune responses in vivo and in vitro, resulting in the production of cytokines, chemokines, and up-regulation of costimulatory molecules. Such responses were severely impaired in TLR9−/− and myeloid differentiation factor 88 (MyD88)−/−, but not in TLR2, TLR4, TLR7, or Toll/interleukin 1 receptor domain–containing adaptor-inducing interferon β−/− mice. Synthetic HZ, which is free of the other contaminants, also activated innate immune responses in vivo in a TLR9-dependent manner. Chloroquine (CQ), an antimalarial drug, abrogated HZ-induced cytokine production. These data suggest that TLR9-mediated, MyD88-dependent, and CQ-sensitive innate immune activation by HZ may play an important role in malaria parasite–host interactions.
Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IkappaB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor-Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4(+) T cells, whereas in non-haematopoietic cells TBK1 was required for CD8(+) T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.