Poly(ethylene glycol) (PEG) modification onto a gene delivery carrier for systemic application results in a trade-off between prolonged blood circulation and promoted transfection because high PEG shielding is advantageous in prolonging blood retention, while it is disadvantageous with regard to obtaining efficient transfection owing to hampered cellular uptake. To tackle this challenging issue, the present investigation focused on the structure of polyplex micelles (PMs) obtained from PEG-poly(l-lysine) (PEG-PLys) block copolymers characterized as rod-shaped structures to seek the most appreciable formulation. Comprehensive investigations conducted with particular focus on stability, PEG crowdedness, and rod length, controlled by varying PLys segment length, clarified the effect of these structural features, with particular emphasis on rod length as a critical parameter in promoting cellular uptake. PMs with rod length regulated below the critical threshold length of 200 nm fully exploited the benefits of cross-linking and the cyclic RGD ligand, consequently, exhibiting remarkable transfection efficiency comparable with that of ExGen 500 and Lipofectamine(®) LTX with PLUS™ even though PMs were PEG shielded. The identified PMs exhibited significant antitumor efficacy in systemic treatment of pancreatic adenocarcinoma, whereas PMs with rod length above 200 nm exhibited negligible antitumor efficacy despite a superior blood circulation property, thereby highlighting the significance of controlling the rod length of PMs to promote gene transduction.
Improving the stability of polyplex micelles under physiological conditions is a critical issue for promoting gene transfection efficiencies. To this end, hydrophobic palisade was installed between the inner core of packaged plasmid DNA (pDNA) and the hydrophilic shell of polyplex micelles using a triblock copolymer consisting of hydrophilic poly(2-ethyl-2-oxazoline), thermoswitchable amphiphilic poly(2-n-propyl-2-oxazoline) (PnPrOx) and cationic poly(L-lysine). The two-step preparation procedure, mixing the triblock copolymer with pDNA below the lower critical solution temperature (LCST) of PnPrOx, followed by incubation above the LCST to form a hydrophobic palisade of the collapsed PnPrOx segment, induced the formation of spatially aligned hydrophilic-hydrophobic double-protected polyplex micelles. The prepared polyplex micelles exhibited significant tolerance against attacks from nuclease and polyanions compared to those without hydrophobic palisades, thereby promoting gene transfection. These results corroborated the utility of amphiphilic poly(oxazoline) as a molecular thermal switch to improve the stability of polyplex gene carriers relevant for physiological applications.
Herein, we report a unique technique to accelerate polymer-SNA conjugation based on copper-free click chemistry: gradual freeze-thawing of the reaction solution substantially increases the conjugation rate possibly because of the reactant concentration at the microenvironment scale. This technique was applied to the conjugation between a small interfering RNA (siRNA) and PEG in an aqueous buffer at/below room temperature.
A major critical issue in systemically administered nanomedicines is nonspecific clearance by the liver sinusoidal endothelium, causing a substantial decrease in the delivery efficiency of nanomedicines into the target tissues. Here, we addressed this issue by in situ stealth coating of liver sinusoids using linear or two-armed poly(ethylene glycol) (PEG)–conjugated oligo(l-lysine) (OligoLys). PEG-OligoLys selectively attached to liver sinusoids for PEG coating, leaving the endothelium of other tissues uncoated and, thus, accessible to the nanomedicines. Furthermore, OligoLys having a two-armed PEG configuration was ultimately cleared from sinusoidal walls to the bile, while OligoLys with linear PEG persisted in the sinusoidal walls, possibly causing prolonged disturbance of liver physiological functions. Such transient and selective stealth coating of liver sinusoids by two-arm-PEG-OligoLys was effective in preventing the sinusoidal clearance of nonviral and viral gene vectors, representatives of synthetic and nature-derived nanomedicines, respectively, thereby boosting their gene transfection efficiency in the target tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.