This paper introduces a new open source platform for end-toend speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR), and adopts widely-used dynamic neural network toolkits, Chainer and Py-Torch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPnet from other open source ASR toolkits, and experimental results with major ASR benchmarks.
Sequence-to-sequence models have been widely used in end-toend speech processing, for example, automatic speech recognition (ASR), speech translation (ST), and text-to-speech (TTS). This paper focuses on an emergent sequence-to-sequence model called Transformer, which achieves state-of-the-art performance in neural machine translation and other natural language processing applications. We undertook intensive studies in which we experimentally compared and analyzed Transformer and conventional recurrent neural networks (RNN) in a total of 15 ASR, one multilingual ASR, one ST, and two TTS benchmarks. Our experiments revealed various training tips and significant performance benefits obtained with Transformer for each task including the surprising superiority of Transformer in 13/15 ASR benchmarks in comparison with RNN. We are preparing to release Kaldi-style reproducible recipes using open source and publicly available datasets for all the ASR, ST, and TTS tasks for the community to succeed our exciting outcomes.
The state-of-the-art neural network architecture named Transformer has been used successfully for many sequence-tosequence transformation tasks. The advantage of this architecture is that it has a fast iteration speed in the training stage because there is no sequential operation as with recurrent neural networks (RNN). However, an RNN is still the best option for end-to-end automatic speech recognition (ASR) tasks in terms of overall training speed (i.e., convergence) and word error rate (WER) because of effective joint training and decoding methods. To realize a faster and more accurate ASR system, we combine Transformer and the advances in RNN-based ASR. In our experiments, we found that the training of Transformer is slower than that of RNN as regards the learning curve and integration with the naive language model (LM) is difficult. To address these problems, we integrate connectionist temporal classification (CTC) with Transformer for joint training and decoding. This approach makes training faster than with RNNs and assists LM integration. Our proposed ASR system realizes significant improvements in various ASR tasks. For example, it reduced the WERs from 11.1% to 4.5% on the Wall Street Journal and from 16.1% to 11.6% on the TED-LIUM by introducing CTC and LM integration into the Transformer baseline.
No abstract
We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-toend speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pretrained models are downloadable. The toolkit is publicly available at https://github. com/espnet/espnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.