Degeneration of dopaminergic neurons of the substantia nigra causes Parkinson's disease. Therefore, neurotrophic factors for dopaminergic neurons are of substantial clinical interest. Fibroblast growth factor (FGF)-20 preferentially expressed in the substantia nigra pars compacta (SNPC) of the rat brain significantly enhanced the survival of midbrain dopaminergic neurons. Here we examined the mechanism of action of FGF-20 on dopaminergic neurons. FGF-20 slightly enhanced the survival of total neurons of the midbrain, indicating that it preferentially enhanced the survival of dopaminergic neurons. FGF receptor (FGFR)-1c was found to be expressed abundantly in dopaminergic neurons in the SNPC but at much lower levels in neurons of other midbrain regions by in situ hybridization. FGF-20 was also found to bind FGFR-1c with high affinity with the BIAcore system. Furthermore, FGF-20 activated the mitogen-activated protein kinase (MAPK) pathway, which is the major intracellular signaling pathway of FGFs. Both the FGFR-1 inhibitor SU5402 and the MAPK pathway inhibitor PD98059 also significantly inhibited the activation of the MAPK pathway by FGF-20 and the neurotrophic activity of FGF-20. The present findings indicate that the activation of the MAPK pathway by FGF-20 signaling through FGFR-1c plays important roles in the survival of dopaminergic neurons in the SNPC.
BackgroundAlthough osteoarthritis (OA) is a highly prevalent joint disease, to date, no reliable biomarkers have been found for the disease. In this study, we attempted to identify factors the amounts of which significantly change in association with the progression of knee OA.MethodsA total of 68 subjects with primary knee OA were enrolled in the study. These subjects were followed up over an 18-month period, and plasma and serum samples were obtained together with knee radiographs every 6 months, i.e., 0, 6, 12 and 18 months after the enrollment. Progressors and non-progressors were determined from the changes on radiographs, and plasma samples from those subjects were subjected to N-glycoproteomic 2D-LC-MALDI analysis. MS peaks were identified, and intensities for respective peaks were compared between the progressors and non-progressors to find the peak intensities of which differed significantly between the two groups of subjects. Proteins represented by the chosen peaks were identified by MS/MS analysis. Expression of the identified proteins was evaluated in synovial tissues from 10 OA knee joints by in situ hybridization, western blotting analysis and ELISA.ResultsAmong the subjects involved in the study, 3 subjects were determined to be progressors, and 6 plasma and serum samples from these subjects were subjected to the analysis together with another 6 samples from the non-progressors. More than 3000 MS peaks were identified by N-glycoproteomic 2D-LC-MALDI analysis. Among them, 4 peaks were found to have significantly different peak intensities between the progressors and non-progressors. MS/MS analysis revealed that these peaks represented clusterin, hemopexin, alpha-1 acid glycoprotein-2, and macrophage stimulating protein, respectively. The expression of these genes in OA synovium was confirmed by in situ hybridization, and for clusterin and hemopexin, by western blotting analysis and ELISA as well.ConclusionsIn this study, 4 potential biomarkers were identified as potential prognostic markers for knee OA through N-glycoproteomic analysis. To the best of our knowledge, this is the first report for the use of glycoproteomic technology in exploring potential biomarkers for knee OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.