The aim of the present study was to examine the mechanisms of Ca2+ overload-induced contractile dysfunction in rat hearts independent of ischemia and acidosis. Experiments were performed on 30 excised cross-circulated rat heart preparations. After hearts were exposed to high Ca2+, there was a contractile failure associated with a parallel downward shift of the linear relation between myocardial O(2) consumption per beat and systolic pressure-volume area (index of a total mechanical energy per beat) in left ventricles from all seven hearts that underwent the protocol. This result suggested a decrease in O(2) consumption for total Ca2+ handling in excitation-contraction coupling. In the hearts that underwent the high Ca2+ protocol and had contractile failure, we found marked proteolysis of a cytoskeleton protein, alpha-fodrin, whereas other proteins were unaffected. A calpain inhibitor suppressed the contractile failure by high Ca2+, the decrease in O(2) consumption for total Ca2+ handling, and membrane alpha-fodrin degradation. We conclude that the exposure to high Ca2+ may induce contractile dysfunction possibly by suppressing total Ca2+ handling in excitation-contraction coupling and degradation of membrane alpha-fodrin via activation of calpain.
Recently, we have consistently observed curved endsystolic pressure-volume relations (ESPVRs) of the left ventricle (LV) in rat blood-perfused [1][2][3] and crystalloid-perfused whole heart preparations [4] and in situ ejecting rat hearts [5,6], like those of the puppy LV [7] and adult canine LV in supernormal contractility [8,9]. These studies suggest more generality of the curvilinear than linear ESPVR in different animal species. Despite this curvilinearity, we have obtained a linear myocardial oxygen consumption per Japanese Journal of Physiology, 49, 513-520, 1999 Key words: excitation-contraction coupling, oxygen consumption, E max (end-systolic pressure-volume ratio), systolic pressure-volume area (PVA). Abstract:We have already reported the linear oxygen consumption per beat (VO 2 )-systolic pressure-volume area (PVA) relation from the curved left ventricular (LV) end-systolic pressure-volume relation (ESPVR) in the cross-circulated rat heart. The VO 2 intercept (PVA-independent VO 2 ) is primarily composed of VO 2 for Ca 2ϩ handling in excitation-contraction (E-C) coupling and basal metabolism. The aim of the present study was to obtain the oxygen cost of LV contractility that indicates VO 2 for Ca 2ϩ handling in E-C coupling per unit LV contractility change in the rat heart. Oxygen cost of LV contractility is obtainable as a slope of a linear relation between PVA-independent VO 2 and LV contractility. We obtained a composite VO 2 -PVA relation line at a mid-range LV volume (mLVV) under gradually enhanced LV contractility by stepwise increased Ca 2ϩ infusion and thus the gradually increased PVA-independent VO 2 values. As a LV contractility index, we could not use E max (ESP-V ratio; ESP/ESV) for the linear ESPVR because of the curved ESPVR in the rat LV. A PVA at a mLVV (PVA mLVV ) has been proposed as a good index for assessing rat LV mechanoenergetics. Since the experimentally obtained PVA mLVV was not triangular due to the curved ESPVR, we propose an equivalent ESP-V ratio at a mLVV, (eESP/ ESV) mLVV , as a LV contractility index. This index was calculated as an ESP-V ratio of the specific virtual triangular PVA mLVV that is energetically equivalent to the real PVA mLVV . The present approach enabled us to obtain a linear relation between PVA-independent VO 2 and (eESP/ ESV) mLVV and the oxygen cost of LV contractility as the slope of this relation.
We conclude that (i) CVF prevents HAR, (ii) the addition of Spx + IS delays rejection, but (iii) the early deposition of antibody leads to progressive graft injury, resulting in (iv) delayed vascular rejection. Our findings indicate that the features of delayed xenograft rejection described in small animal models also occur in the pig-to-baboon model, and that rejection may occur in a complement-independent manner from the effects of antibody and/or host macrophages.
To gain insight into the pathogenesis of diabetic cardiomyopathy, we investigated cardiac function in terms of the coupling of left ventricular mechanical work and the energetics in Otsuka Long-Evans Tokushima Fatty rats, which are well known as a model of type 2 diabetes mellitus (DM). Neither left ventricular systolic function and mean coronary flow nor coronary flow reserve differed even in late DM rats. The amount of oxygen required for mechanical work and contraction was unaltered, although myosin isozyme was finally transformed from V(1) to V(3). The maximum pacing rate was decreased from 300 to 240 beats/min, and the left ventricular relaxation rate was significantly (P < 0.05) slower only in late DM rats, resulting in decreased oxygen consumption per minute for total Ca(2+) handling in excitation-contraction coupling mainly consumed by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) without significant changes in basal metabolism or in mitochondrial oxidative phosphorylation. The protein level of SERCA2 in membranes was significantly (P < 0.001) lower in severe DM rats. We conclude that the only lusitropic dysfunction due to the depressed expression of SERCA2 is related to generating diabetic cardiomyopathy even in the present type 2 diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.