The Wnt/β-catenin signaling and TGFβ signaling pathways play a key role in osteoblast differentiation. The miRNAs play important roles in regulating gene expression at the post-transcriptional level through fine-tuning of protein-encoding gene expression. However, involvement of miRNAs is not established for Wnt3a and TGFβ signaling pathways in osteoblast differentiation. Here, we examined the role of miRNAs expressed differentially after Wnt3a expression during osteoblast differentiation. Over-expression of the Wnt3a gene increased ALP transcription, but decreased Col1, Runx2, and OCN transcription in osteoblastic MC3T3-E1 cells. Expression profiling and quantitative PCR for miRNAs showed that miR-140-3p decreased in Wnt3a-over-expressing osteoblastic cells. Wnt3a over-expression increased TGFβ3 expression, whereas transfection of the miR-140-3p mimic into MC3T3-E1 cells significantly inhibited TGFβ3 expression. Luciferase assay for the TGFβ3 transcript showed that TGFβ3 was a direct target of miR-140-3p. miR-140-3p mimic transfection resulted in significantly increased OCN transcription, but did not affect ALP, Col1, and Runx2 transcription in MC3T3-E1 cells. rTGFβ3 treatment decreased OCN transcription in MC3T3-E1 cells. These results suggest that the miR-140-3p is involved in osteoblast differentiation as a critical regulatory factor between Wnt3a and TGFβ3 signaling pathways.
Insulin-like growth factors, IGF-I and IGF-II, play important roles in development and myelination in the CNS, but little is known about the response of IGF after demyelination. The present study investigated the expression of IGF and their cognitive receptors in the process of remyelination following ethidium bromide (EBr)-induced demyelination in the adult mouse spinal cord. The present results, in a quantitative real-time PCR, showed significant increases in the levels of the mRNA for both IGF-I and IGF-II during both the demyelination and remyelination stages. The levels of IGF-I receptor (IGF-IR) mRNA increased from 10 days to 4 weeks after the EBr injection. The levels of IGF-II receptor (IGF-IIR) mRNA decreased for 6 days and then increased 10 days after the EBr injection. In situ hybridization studies showed the cells expressing IGF-I mRNA to be mainly macrophage-like cells, while those expressing IGF-II mRNA were predominantly Schwann cell-like cells invading the demyelinating lesion. The immunoreactivity for the IGF-IR and IGF-IIR increased in various kinds of cells within and around the demyelinating lesions from 6 days to 4 weeks after the EBr injection. These results suggest that locally produced IGF could partly be involved in some mechanisms underlying remyelination processes following the EBr-induced demyelination in the mouse spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.