Ferritin-Fe(III) was rapidly and quantitatively reduced and liberated as Fe(II) by FMNH(2), FADH(2) and reduced riboflavin. Dithionite also released Fe(II) from ferritin but at less than 1% of the rate with FMNH(2). Cysteine, glutathione and ascorbate gave a similar slower rate and yielded less than 20% of the total iron from ferritin within a few hours. The reduction of ferritin-Fe(III) by the three riboflavin compounds gave complex second-order kinetics with overlapping fast and slow reactions. The fast reaction appeared to be non-specific and may be due to a reduction of Fe(III) of a lower degree of polymerization, equilibrated with ferritin iron. The amount of this Fe(3+) ion initially reduced was small, less than 0.3% of the total iron. Addition of FMN to the ferritin-dithionite system enhanced the reduction; this is due to the reduction of FMN by dithionite to form FMNH(2) which then reduces ferritin-Fe(III). A comparison of the thermodynamic parameters of FMNH(2)-ferritin and dithionite-ferritin complex formation showed that FMNH(2) required a lower activation energy and a negative entropy change, whereas dithionite required 50% more activation energy and showed a positive entropy change in ferritin reduction. The effectiveness of FMNH(2) in ferritin-Fe(III) reduction may be due to a specific binding of the riboflavin moiety to the protein portion of the ferritin molecule.
The plasma generated from a gas mixture of NH3 plus O2 (NH3 + O2) has been used to impart unique chemical and biological characteristics to polytetrafluoroethylene (PTFE). PTFE treated with NH3 + O2 plasma was physiochemically distinct from surfaces treated with plasma of either NH3 or O2 alone, as determined by electron spectroscopy for chemical analysis (ESCA). The contact angle analysis revealed that the PTFE surfaces became less hydrophobic after plasma treatments. ESCA results indicate the presence of oxygen-containing groups and nitrogen-containing groups at the plasma-treated surfaces. PTFE treated with NH3 + O2 plasma resisted the attachment of platelets and leukocytes in a manner similar to untreated PTFE; however, the attachment of bovine aorta endothelial cells was substantially increased. Once attached, these cells grew to confluency. The increased endothelial cell attachment was higher than that observed following plasma treatment with each gas used separately, which could be attributed to the considerable amount of CF(OR)2-CF2 formed on the NH3 + O2 plasma-treated PTFE surface. At 14 days after subcutaneous implantation in rats, the PTFE wafers treated with NH3 + O2 plasma demonstrated less encapsulation and lower levels of inflammatory cells compared to controls. Collectively, the results suggest that NH3 + O2 plasma treatment imparts a unique character to PTFE and could be useful in certain in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.