Dehydroepiandrosterone (DHEA) is a naturally occurring steroid synthesized in the adrenal cortex, gonads, brain, and gastrointestinal tract, and it is known to have chemopreventive and anti-proliferative actions on tumors. These effects are considered to be induced by the inhibition of glucose-6-phosphate dehydrogenase (G6PD) and/or HMG-CoA reductase (HMGR) activities. The present study was undertaken to investigate whether endogenous DHEA metabolites, i.e. DHEA-sulfate, 7-oxygenated DHEA derivatives, androsterone, epiandrosterone, and etiocholanolone, have anti-proliferative effects on cancer cells and to clarify which enzyme, G6PD or HMGR, is responsible for growth inhibition. Growth of Hep G2, Caco-2, and HT-29 cells, evaluated by 3-[4,5-dimethylthiazol]-2yl-2,5-diphenyl tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays, was time- and dose-dependently inhibited by addition of all DHEA-related steroids we tested. In particular, the growth inhibition due to etiocholanolone was considerably greater than that caused by DHEA in all cell lines. The suppression of growth of the incubated steroids was not correlated with the inhibition of G6PD (r=-0.031, n=9, NS) or HMGR (r=0.219, n=9, NS) activities. The addition of deoxyribonucleosides or mevalonolactone to the medium did not overcome the inhibition of growth induced by DHEA or etiocholanolone, while growth suppression by DHEA was partially prevented by the addition of ribonucleosides. These results demonstrate that endogenous DHEA metabolites also have an anti-proliferative action that is not induced by inhibiting G6PD or HMGR activity alone. These non-androgenic DHEA metabolites may serve as chemopreventive or anti-proliferative therapies.
These results suggest that the induction of apoptosis through the inhibition of the PI3K/Akt signaling pathway is one of the anti-proliferative mechanisms of DHEA in certain tumors, but that DHEA also promotes cell-cycle arrest without the induction of apoptosis.
Advanced cancer patients with good performance status (PS) sometimes show poor prognosis despite receiving some chemotherapies. We evaluated prognosis of chemo-naïve advanced biliary tract cancer (ABTC) patients with good PS by Glasgow Prognostic Score (GPS). Sixty-two patients with Eastern Cooperative Oncology Group PS 0 or 1 were retrospectively analyzed, using multivariate Cox regression. GPS was defined with serum levels of two parameters, albumin >3.5 g/dl and C-reactive protein <1.0 mg/dl (both as 0, either as 1, and neither as 2). PS 0 (n = 32) and 1 (n = 30) patients had similar survival (P = 0.98). The median overall survival (OS) was 17.0 months for GPS 0 (n = 19), 14.2 months for GPS 1 (n = 17), and 6.4 months for GPS 2 (n = 26). GPS 2 had significantly shorter OS than GPS 0 (P = 0.002) or 1 (P = 0.033). Multivariate analysis identified two independent prognostic factors: GPS (hazard ratio 0.60, 95 % confidence interval 0.40-0.90, P = 0.012) and liver metastasis (hazard ratio 0.43, 95 % CI 0.20-0.90, P = 0.026). GPS was useful for chemo-naïve ABTC patients with good PS.
The aim of this study was to explore the regulation of serum cholic acid (CA)/chenodeoxycholic acid (CDCA) ratio in cholestatic hamster induced by ligation of the common bile duct for 48 h. The serum concentration of total bile acids and CA/CDCA ratio were significantly elevated, and the serum proportion of unconjugated bile acids to total bile acids was reduced in the cholestatic hamster similar to that in patients with obstructive jaundice. The hepatic CA/CDCA ratio increased from 3.6 to 11.0 (P<0.05) along with a 2.9-fold elevation in CA concentration (P<0.05) while the CDCA level remained unchanged. The hepatic mRNA and protein level as well as microsomal activity of the cholesterol 7alpha-hydroxylase, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase and 5beta-cholestane-3alpha,7alpha,12alpha-triol 25-hydroxylase were not significantly affected in cholestatic hamsters. In contrast, the mitochondrial activity and enzyme mass of the sterol 27-hydroxylase were significantly reduced, while its mRNA levels remained normal in bile duct-ligated hamster. In conclusion, bile acid biosynthetic pathway via mitochondrial sterol 27-hydroxylase was preferentially inhibited in bile duct-ligated hamsters. The suppression of CYP27A1 is, at least in part, responsible for the relative decreased production of CDCA and increased CA/CDCA ratio in the liver, bile and serum of cholestatic hamsters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.