BackgroundAgarwood (Aquilaria sinensis), well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA) in a rat model of low-fiber diet-induced constipation.MethodsA set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats.ResultsPretreatment of normal rats with single dose of EEA (600 mg/kg, p.o.) significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o.) for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg) or senna (150 and 300 mg/kg) significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg), for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg) significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg) produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea.ConclusionThese findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of neurodegenerative and ischemic disorders. The purpose of this study was to evaluate the effects of Chinese propolis and its constituents [chrysin, galangin, pinocembrin, caffeic acid, and caffeic acid phenethyl ester (CAPE)] against tunicamycin-induced neuronal cell death in SH-SY5Y cells. Both Chinese propolis and chrysin concentration-dependently inhibited such cell death, the tunicamycin-induced activation of caspase-3, and the effects of tunicamycin on mitochondria [release of cytochrome c into the cytosol and disruption of the mitochondrial membrane potential (DeltaPsim)]. Furthermore, Chinese propolis and chrysin each inhibited staurosporine-induced cell death. These findings indicate that the inhibitory effects of Chinese propolis against neuronal cell death induced by ER stress or staurosporine may be exerted primarily by chrysin. Moreover, the mechanism underlying the protective effects may, at least partly, involve inhibitions of caspase-3 activity and the mitochondrial apoptotic pathway.
Brazilian green propolis is a popular health supplement because of its various biological properties. The ethanol extract of Brazilian green propolis (EEBP) is characteristic for its herb-like smell and unique pungent taste. However, the ingredients responsible for its pungency have not yet been identified. This study provides the first evidence that artepillin C is the main pungent ingredient in EEBP and that it potently activates human transient receptor potential ankyrin 1 (TRPA1) channels. EEBP was fractionated using column chromatography with a step gradient elution of an ethanol-water solution, and the fractions having the pungent taste were determined by sensory tests. HPLC analysis revealed that the pungent fraction was composed primarily of artepillin C, a prenylated derivative of cinnamic acid. Artepillin C was also identified as the pungent compound of EEBP by organoleptic examiners. Furthermore, the effects of artepillin C and other cinnamic acids found in EEBP on TRPA1 channels were examined by calcium imaging and plate reader-based assays in human TRPA1-expressing cells to investigate the molecular mechanisms underlying their pungent tastes. Artepillin C and baccharin activated the TRPA1 channel strongly, whereas drupanin caused a slight activation and p-coumaric acid showed no activation. Because the EC50 values of artepillin C, baccharin, and allyl isothiocyanate were 1.8 µM, 15.5 µM, and 6.2 µM, respectively, artepillin C was more potent than the typical TRPA1 agonist allyl isothiocyanate. These findings strongly indicate that artepillin C is the main pungent ingredient in EEBP and stimulates a pungent taste by activating TRPA1 channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.