We calculate the vertical structure of a local patch of an accretion disk in which heating by dissipation of MRI-driven MHD turbulence is balanced by radiative cooling. Heating, radiative transport, and cooling are computed selfconsistently with the structure by solving the equations of radiation MHD in the shearing-box approximation. Using a fully 3-d and energy-conserving code, we compute the structure of this disk segment over a span of more than five cooling times. After a brief relaxation period, a statistically steady-state develops. Measuring height above the midplane in units of the scale-height predicted by a Shakura-Sunyaev model, we find that the disk atmosphere stretches upward, with the photosphere rising to ≃ 7H, in contrast to the ≃ 3H predicted by conventional analytic models. This more extended structure, as well as fluctuations in the height of the photosphere, may lead to departures from Planckian form in the emergent spectra. Dissipation is distributed across the region within ≃ 3H of the midplane, but is very weak at greater altitudes. As a result, the temperature deep in the disk interior is less than that expected when all heat is generated in the midplane. With only occasional exceptions, the gas temperature stays very close to the radiation temperature, even above the photosphere. Because fluctuations in the dissipation are particularly strong away from the midplane, the emergent radiation flux can track dissipation fluctuations with a lag that is only 0.1-0.2 times the mean cooling time of the disk. Long timescale asymmetries in the dissipation distribution can also cause significant asymmetry in the flux emerging from the top and bottom surfaces of the disk. Radiative diffusion dominates Poynting flux in the vertical energy flow throughout the disk. Subject headings:
When the accretion rate is more than a small fraction of Eddington, the inner regions of accretion disks around black holes are expected to be radiation-dominated. However, in the α-model, these regions are also expected to be thermally unstable. In this paper, we report two 3-d radiation MHD simulations of a vertically-stratified shearing box in which the ratio of radiation to gas pressure is ∼ 10, and yet no thermal runaway occurs over a timespan ≃ 40 cooling times. Where the time-averaged dissipation rate is greater than the critical dissipation rate that creates hydrostatic equilibrium by diffusive radiation flux, the time-averaged radiation flux is held to the critical value, with the excess dissipated energy transported by radiative advection. Although the stress and total pressure are well-correlated as predicted by the α-model, we show that stress fluctuations precede pressure fluctuations, contrary to the usual supposition that the pressure controls the saturation level of the magnetic energy. This fact explains the thermal stability. Using a simple toy-model, we show that independently-generated magnetic fluctuations can drive radiation pressure fluctuations, creating a correlation between the two while maintaining thermal stability.
We have carried out fully relativistic numerical simulations of accretion disks in the Kerr metric. In this paper we focus on the unbound outflows that emerge self-consistently from the accretion flow. These outflows are found in the axial funnel region and consist of two components: a hot, fast, tenuous outflow in the axial funnel proper and a colder, slower, denser jet along the funnel wall. The funnel-wall jet is excluded from the axial funnel by elevated angular momentum and is also pressure-confined by a magnetized corona. Inside the funnel, a largescale poloidal magnetic field spontaneously arises from the coupled dynamics of accretion and outflow, although there was no large-scale field in the initial state. Black hole rotation is not required to produce these unbound outflows, but their strength is enhanced by black hole spin. When the black hole spins rapidly, the energy ejected can be tens of percent of the accreted rest mass. At low spin, kinetic energy and enthalpy of the matter dominate the outflow energetics; at high spin, the balance shifts to Poynting flux. We compare the outflows observed in our simulations with those seen in other simulations. Subject headingg s: accretion, accretion disks -black hole physics -ISM: jets and outflows -MHD
We present a detailed analysis of the magnetic field structure found in a set of four general relativistic 3D MHD simulations of accreting tori in the Kerr metric with different black hole spins. Among the properties analyzed are the field strength as a function of position and black hole spin, the shapes of field lines, the degree to which they connect different regions, and their degree of tangling. Strong magnetic field is found toward small radii, and field strength increases with black hole spin. In the main disk body, inner torus, and corona the field is primarily toroidal. Most field lines passing through a given radius in these regions wander through a narrow radial range, suggesting an overall tightlywound spiral structure. In the main disk body and inner torus sharp field line bends on small spatial scales are superimposed on the spirals, but the field lines are much smoother in the corona. The magnetic field in the plunging region is also comparatively smooth, being stretched out radially by the infalling gas. The magnetic field in the axial funnel resembles a split monopole, but with evidence of frame dragging of the field lines near the poles of the black hole.
This paper continues the analysis of a set of general relativistic 3D MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the timeaveraged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in Paper I of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M ≥ 0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.