Dementia is one of the most debilitating symptoms of Parkinson's disease. A recent longitudinal study suggests that up to 80% of patients with Parkinson's disease will eventually develop dementia. Despite its clinical importance, the development of dementia is still difficult to predict at early stages. We previously identified olfactory dysfunction as one of the most important indicators of cortical hypometabolism in Parkinson's disease. In this study, we investigated the possible associations between olfactory dysfunction and the risk of developing dementia within a 3-year observation period. Forty-four patients with Parkinson's disease without dementia underwent the odour stick identification test for Japanese, memory and visuoperceptual assessments, (18)F-fluorodeoxyglucose positron emission tomography scans and magnetic resonance imaging scans at baseline and 3 years later. A subgroup of patients with Parkinson's disease who exhibited severe hyposmia at baseline showed more pronounced cognitive decline at the follow-up survey. By the end of the study, 10 of 44 patients with Parkinson's disease had developed dementia, all of whom had severe hyposmia at baseline. The multivariate logistic analysis identified severe hyposmia and visuoperceptual impairment as independent risk factors for subsequent dementia within 3 years. The patients with severe hyposmia had an 18.7-fold increase in their risk of dementia for each 1 SD (2.8) decrease in the score of odour stick identification test for Japanese. We also found an association between severe hyposmia and a characteristic distribution of cerebral metabolic decline, which was identical to that of dementia associated with Parkinson's disease. Furthermore, volumetric magnetic resonance imaging analyses demonstrated close relationships between olfactory dysfunction and the atrophy of focal brain structures, including the amygdala and other limbic structures. Together, our findings suggest that brain regions related to olfactory function are closely associated with cognitive decline and that severe hyposmia is a prominent clinical feature that predicts the subsequent development of Parkinson's disease dementia.
Background/Aims: Frontal lobe dysfunction is believed to be a primary cognitive symptom in idiopathic normal pressure hydrocephalus (iNPH); however, the neuropsychology of this disorder remains to be fully investigated. The objective of this study was to delineate a comprehensive profile of cognitive dysfunction in iNPH and evaluate the effects of cerebrospinal fluid (CSF) shunt surgery on cognitive dysfunction. Methods: A total of 32 iNPH patients underwent neuropsychological testing of memory, attention, language, executive function, and visuoperceptual and visuospatial abilities. Of these 32 patients, 26 were reevaluated approximately 1 year following CSF shunt surgery. The same battery of tests was performed on 32 patients with Alzheimer’s disease (AD) and 30 healthy elderly controls. Results: The iNPH patients displayed baseline deficits in attention, executive function, memory, and visuoperceptual and visuospatial functions. Impairments of attention, executive function, and visuoperceptual and visuospatial abilities in iNPH patients were more severe than in those with AD, whereas the degree of memory impairment was comparable to that in AD patients. A significant improvement in executive function was observed following shunt surgery. Conclusion: Patients with iNPH are impaired in various aspects of cognition involving both ‘frontal’ executive functions and ‘posterior cortical’ functions. Shunt treatment can ameliorate executive dysfunction.
BackgroundVisual hallucinations are a core clinical feature of dementia with Lewy bodies (DLB), and this symptom is important in the differential diagnosis and prediction of treatment response. The pareidolia test is a tool that evokes visual hallucination-like illusions, and these illusions may be a surrogate marker of visual hallucinations in DLB. We created a simplified version of the pareidolia test and examined its validity and reliability to establish the clinical utility of this test.MethodsThe pareidolia test was administered to 52 patients with DLB, 52 patients with Alzheimer’s disease (AD) and 20 healthy controls (HCs). We assessed the test-retest/inter-rater reliability using the intra-class correlation coefficient (ICC) and the concurrent validity using the Neuropsychiatric Inventory (NPI) hallucinations score as a reference. A receiver operating characteristic (ROC) analysis was used to evaluate the sensitivity and specificity of the pareidolia test to differentiate DLB from AD and HCs.ResultsThe pareidolia test required approximately 15 minutes to administer, exhibited good test-retest/inter-rater reliability (ICC of 0.82), and moderately correlated with the NPI hallucinations score (rs = 0.42). Using an optimal cut-off score set according to the ROC analysis, and the pareidolia test differentiated DLB from AD with a sensitivity of 81% and a specificity of 92%.ConclusionsOur study suggests that the simplified version of the pareidolia test is a valid and reliable surrogate marker of visual hallucinations in DLB.
The aim of this study was to characterise the white matter damage involved in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI) and the relationship between this damage and clinical presentation. Twenty patients with INPH, 20 patients with Alzheimer's disease and 20 patients with idiopathic Parkinson's disease (as disease control groups) were enrolled in this study. Mean diffusivity (MD) and fractional anisotropy (FA) were determined using DTI, and these measures were analysed to compare the INPH group with the control groups and with certain clinical correlates. On average, the supratentorial white matter presented higher MD and lower FA in the INPH group than in the control groups. In the INPH group, the mean hemispheric FA correlated with some of the clinical measures, whereas the mean hemispheric MD did not. On a voxel-based statistical map, white matter involvement with high MD was localised to the periventricular regions, and white matter involvement with low FA was localised to the corpus callosum and the subcortical regions. The total scores on the Frontal Assessment Battery were correlated with the FA in the frontal and parietal subcortical white matter, and an index of gait disturbance was correlated with the FA in the anterior limb of the left internal capsule and under the left supplementary motor area. DTI revealed the presence of white matter involvement in INPH. Whereas white matter regions with high MD were not related to symptom manifestation, those with low FA were related to motor and cognitive dysfunction in INPH.
BackgroundThe aim of this study was to elucidate changes in cerebral white matter after shunt surgery in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI).MethodsTwenty-eight consecutive INPH patients whose symptoms were followed for 1 year after shunt placement and 10 healthy control (HC) subjects were enrolled. Twenty of the initial 28 INPH patients were shunt-responsive (SR) and the other 8 patients were non-responsive (SNR). The cerebral white matter integrity was detected by assessing fractional anisotropy (FA) and mean diffusivity (MD). The mean hemispheric DTI indices and the ventricular sizes were calculated, and a map of these DTI indices was created for each subject. The DTI maps were analysed to compare preshunt INPH with HC and preshunt INPH with 1 year after shunt placement in each INPH group, using tract-based spatial statistics. We restricted analyses to the left hemisphere because of shunt valve artefacts.ResultsThe ventricles became significantly smaller after shunt placement both in the SR and SNR groups. In addition, there was a significant interaction between clinical improvement after shunt and decrease in ventricular size. Although the hemispheric DTI indices were not significantly changed after shunt placement, there was a significant interaction between clinical improvement and increase in hemispheric MD. Compared with the HC group, FA in the corpus callosum and in the subcortical white matter of the convexity and the occipital cortex was significantly lower in SR at baseline, whereas MD in the periventricular and peri-Sylvian white matter was significantly higher in the SR group. Compared with the pre-operative images, the post-operative FA was only decreased in the corona radiata and only in the SR group. There were no significant regions in which DTI indices were altered after shunt placement in the SNR group.ConclusionsBrain white matter regions in which FA was decreased after shunt placement were in the corona radiata between the lateral ventricles and the Sylvian fissures. This finding was observed only in shunt-responsive INPH patients and might reflect the plasticity of the brain for mechanical pressure changes from the cerebrospinal fluid system.Electronic supplementary materialThe online version of this article (doi:10.1186/s12987-016-0048-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.