Fullerenes
and their derivatives are of tremendous technological
relevance. Synthetic access and application are still hampered by
tedious purification protocols, peculiar solubility, and limited control
over regioselective derivatization. We present a modular self-assembly
system based on a new low-molecular-weight binding motif, appended
by two palladium(II)-coordinating units of different steric demands,
to either form a [Pd2L14]4+ cage or an unprecedented [Pd2L23(MeCN)2]4+ bowl (with L1 = pyridyl, L2 = quinolinyl
donors). The former was used as a selective induced-fit receptor for
C60. The latter, owing to its more open structure, also
allows binding of C70 and fullerene derivatives. By exposing
only a fraction of the bound guests’ surface, the bowl acts
as fullerene protecting group to control functionalization, as demonstrated
by exclusive monoaddition of anthracene. In a hierarchical manner,
sterically low-demanding dicarboxylates were found to bridge pairs
of bowls into pill-shaped dimers, able to host two fullerenes. The
hosts allow transferring bound fullerenes into a variety of organic
solvents, extending the scope of possible derivatization and processing
methodologies.
Despite its inertness toward pericyclic reactions under common conditions, naphthalenes readily undergo Diels-Alder reactions when coencapsulated with a suitable dienophile within the cavity of a self-assembled host. Localization of the reactant pair significantly reduces the entropic cost of the reaction, and preorganization within the host cavity controls both the regio- and stereoselectivity of the reaction: electronically disfavored exo adducts were obtained, and with substituted naphthalenes, the reaction takes place on the less electron-rich, unsubstituted ring. Our findings highlight the fact that judicious tuning of substrate size and shape within molecular flasks can unveil new and unusual reactivities for otherwise unreactive molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.