The genomic RNA of Turnip yellow mosaic virus (TYMV) has an 82-nucleotide-long tRNA-like structure at its 3'-end that can be valylated and then form a stable complex with translation elongation factor eEF1A.GTP. Transcription of this RNA by TYMV RNA-dependent RNA polymerase (RdRp) to yield minus strands has previously been shown to initiate within the 3'-CCA sequence. We have now demonstrated that minus strand synthesis is strongly repressed upon the binding of eEF1A.GTP to the valylated viral RNA. eEF1A.GTP had no effect on RNA synthesis templated by non-aminoacylated RNA. Higher eEF1A.GTP levels were needed to repress minus strand synthesis templated by valyl-EMV TLS RNA, which binds eEF1A.GTP with lower affinity than does valyl-TYMV RNA. Repression by eEF1A.GTP was also observed with a methionylated variant of TYMV RNA and with aminoacylated tRNAHis, tRNAAla, and tRNAPhe transcripts. It is proposed that minus strand repression by eEF1A.GTP binding occurs early during infection to help coordinate the competing translation and replication functions of the genomic RNA.
SUMMARY
Considerable research has focused on the cis‐ and trans‐acting components required for various aspects of the potato virus X (PVX) infection process. In addition, the development of PVX‐based vectors has facilitated analyses of the PVX infection process and provided diverse technological applications. As a result, the PVX system will continue to serve as a model for analyses of processes such as virus movement, RNA replication, and gene silencing, and as a tool for protein expression.
SummaryTranslation elongation factor G (EF-G) in bacteria plays two distinct roles in different phases of the translation system. EF-G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post-termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF-G are distributed over two different EF-G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF-G is also found in bacteria. Two EF-G paralogues are found in the spirochaete Borrelia burgdorferi, EF-G1 and EF-G2. We demonstrate that EF-G1 is a translocase, while EF-G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF-G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF-3) is present in the reaction. These results indicate that two B. burgdorferi EF-G paralogues are close relatives to mitochondrial EF-G paralogues rather than the conventional bacterial EF-G, in both their phylogenetic and biochemical features.
In the asporogenc yeast Candida cylindracea, the codon CUG is read as serine instead of leucine. This is an unusual insance in which the amino acid ignment of a codon deviates from the universal code. To infer the evolutionary process of this change, the tRNA with the anticodon sequence CAG, which is complementary to and thus responsible for transltion of the codon CUG, has been identified. Indeed, this tRNA t tes an in-frame CUG codon in a synthetic mRNA as serine in an in vitro tntion system. The gene for the tRNA is interrupted by an intron in the anticodon loop. Sequence
Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-Å resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.