We have developed an illustrated questionnaire, the Hand20, comprising 20 short and easy-to-understand questions to assess disorders of the upper limb. We have examined the usefulness of this questionnaire by comparing reliability, validity, responsiveness and the level of missing data with those of the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. A series of 431 patients with disorders of the upper limb completed the Hand20 and the Japanese version of the DASH (DASH-JSSH) questionnaire. The norms for Hand20 scores were determined in another cross-sectional study. Most patients had no difficulty in completing the Hand20 questionnaire, whereas the DASH-JSSH had a significantly higher rate of missing data. The standard score for the Hand20 was smaller than the reported norms for the DASH. Our study showed that the Hand20 questionnaire provided validation comparable with that of the DASH-JSSH. Explanatory illustrations and short questions which were easy-to-understand led to better rates of response and fewer missing data, even in elderly individuals with cognitive deterioration.
Recent data have shown that preservation of the neuromuscular junction (NMJ) after traumatic nerve injury helps to improve functional recovery with surgical repair via matrix metalloproteinase-3 (MMP3) blockade. As such, we sought to explore additional pathways that may augment this response. Wnt3a has been shown to inhibit acetylcholine receptor (AChR) clustering via β-catenin-dependent signaling in the development of the NMJ. Therefore, we hypothesized that Wnt3a and β-catenin are associated with NMJ destabilization following traumatic denervation. A critical size nerve defect was created by excising a 10-mm segment of the sciatic nerve in mice. Denervated muscles were then harvested at multiple time points for immunofluorescence staining, quantitative real-time PCR, and western blot analysis for Wnt3a and β-catenin levels. Moreover, a novel Wnt/β-catenin transgenic reporter mouse line was utilized to support our hypothesis of Wnt activation after traumatic nerve injury. The expression of Wnt3a mRNA was significantly increased by 2 weeks post-injury and remained upregulated for 2 months. Additionally, β-catenin was activated at 2 months post-injury relative to controls. Correspondingly, immunohistochemical analysis of denervated transgenic mouse line TCF/Lef:H2B-GFP muscles demonstrated that the number of GFP-positive cells was increased at the motor endplate band. These collective data support that post-synaptic AChRs destabilize after denervation by a process that involves the Wnt/β-catenin pathway. As such, this pathway serves as a potential therapeutic target to prevent the motor endplate degeneration that occurs following traumatic nerve injury.
Background: Medical image processing has facilitated simulation of 3-dimensional (3-D) corrective osteotomy, and 3-D rapid prototyping technology has further enabled the manufacturing of patient-matched surgical guides and implants (patient-matched instruments, or PMIs). However, 3-D corrective osteotomy using these technologies has not been the standard procedure. We aimed to prospectively verify the efficacy and safety of PMIs in corrective osteotomy for deformities of the upper extremity. Methods: We enrolled 16 patients with a total of 17 bone deformities in the upper extremity. Eight patients had distal radial malunion; 5, distal humeral malunion; and 3, forearm diaphyseal malunion. All cases underwent 3-D corrective osteotomy with PMIs. The primary end point was the residual maximum deformity angle (MDA), which was calculated from 2 deformity angles—1 on the anteroposterior and 1 on the lateral postoperative radiograph. Secondary end points included the deformity angle on radiographs, 3-D error between the preoperative planning model and the postoperative result, range of motion, grip strength, pain measured with a visual analog scale (VAS), patient satisfaction, and Disabilities of the Arm, Shoulder and Hand (DASH) score. Results: The average MDA significantly improved from 25.5° preoperatively to 3.3° at the final follow-up (p < 0.001). The angular deformity was within 5° in all cases, except for 1 with distal radial malunion who had a higher angle on the anteroposterior radiograph. The error between the correction seen on the postoperative 3-D bone model and the planned correction was <1° and <1 mm. Flexion and extension of the wrist and pronation of the forearm of the patients treated for distal radial malunion improved significantly, and pronation improved for those treated for forearm diaphyseal malunion. The average VAS score, grip strength, and DASH score significantly improved as well. Of the 16 patients, 15 were very satisfied or satisfied with the outcomes. Conclusions: Corrective osteotomy using PMIs achieved accurate correction and good functional recovery in the upper extremity. Although our study was limited to cases without any deformity on the contralateral side, 3-D corrective osteotomy using PMIs resolved treatment challenges for complex deformities in upper extremities. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.