A method for predicting the average heat transfer coefficient is presented for film condensation on horizontal low integral-fin tubes. Approximate equations based on the numerical analysis of surface tension drained condensate flow on the fin surface are developed for the heat transfer coefficients in the upper and lower portions of the flooding point below which the interfin space is flooded with condensate. For the unflooded region, the equation is modified to take account of the effect of gravity. These equations are used, along with the previously derived equation for the flooding point, to determine the wall temperature distribution, and in turn the average heat transfer coefficient. It is shown that the present model can predict the average heat transfer coefficient within ±20 percent for most of the available experimental data including 11 fluids and 22 tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.