The mechanism of peritoneal fibrosis in patients on continuous ambulatory peritoneal dialysis (CAPD) is poorly elucidated. We investigated the cellular mechanism of high-glucose-induced expression of monocyte chemoattractant protein-1 (MCP-1), which is important in recruiting monocytes into the peritoneum and progression of peritoneal fibrosis, and examined the inhibitory mechanism of glucocorticoids. Rat peritoneal mesothelial cells were cultured in high-glucose-containing medium and then analyzed for phosphorylation levels of p42/44 and p38 mitogen-activated protein (MAP) kinases (MAPK), MAPK or extracellular signal-regulated kinase kinase (MEK)1/2, c-Jun N-terminal kinase (JNK)1/2, and protein kinase C (PKC) by Western blotting. Expression of MCP-1 was examined by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. DNA-binding activity of nuclear factor (NF)-kappaB was measured by electrophoretic mobility shift assay. High glucose increased MCP-1 mRNA and MCP-1 protein expression. Although glucose increased phosphorylation of MEK1/2, p42/44 MAPK, p38 MAPK, JNK1/2, and PKC, and DNA-binding activity of NF-kappaB, its effect on MCP-1 expression was suppressed only by PKC and NF-kappaB inhibitors. Mannitol caused a similar increase in PKC and NF-kappaB activation and MCP-1 synthesis. Prednisolone increased I-kappaB-alpha expression and inhibited glucose/mannitol-induced NF-kappaB DNA binding and MCP-1 expression without affecting PKC phosphorylation. The inhibitory effects of prednisolone on MCP-1 expression were reversed by mifepristone, a glucocorticoid receptor antagonist. Our results indicate that glucose induces MCP-1 mainly through hyperosmolarity by activating PKC and its downstream NF-kappaB, and that such effect was inhibited by prednisolone, suggesting the efficacy of prednisolone in preventing peritoneal fibrosis in patients on CAPD.
Elevated parathyroid hormone (PTH) levels and hyperphosphatemia are thought to be associated with the development of calciphylaxis. We report a patient on hemodialysis who developed proximal calciphylaxis with consistently low PTH levels after parathyroidectomy. A 31-year-old man was admitted to our hospital because of abdominal skin ulcerations. Calciphylaxis spread to the penis, and simultaneous progressive lung calcification was evident on chest X-ray, suggestive of pulmonary calciphylaxis on 99m Tc-methylene disphosphonate scintigraphy. The patient died of respiratory failure despite intensive treatment including hyperbaric oxygen therapy. This is the first report of a patient on hemodialysis who developed calciphylaxis involving the penis after parathyroidectomy. (Internal Medicine 43: 63-68, 2004)
Background. Growth factors, extracellular matrix and its receptor integrins are upregulated in various glomerular diseases. We investigated the mechanism of collaboration between integrins and plateletderived growth factor (PDGF) in focal adhesion kinase (FAK)-and extracellular signal-related kinase (ERK)1/2-mediated signal pathways that lead to monocyte chemoattractant protein (MCP)-1 expression in cultured rat mesangial cells (MCs). Methods. Serum-starved MCs were plated on fibronectin-or polylysine-coated plates with or without PDGF, and examined for phosphorylation of ERK1/2, mitogen-activated protein or ERK kinase (MEK)1/2 and FAK by western blotting, and for expression of MCP-1 mRNA and protein by reverse transcriptionpolymerase chain reaction (RT-PCR) and enzymelinked immunosorbent assay (ELISA), respectively. The effects of dominant-negative FAK on MCP-1 expression were examined. Results. Cell adhesion to fibronectin increased phosphorylation of FAK, MEK1/2 and ERK1/2, and induced MCP-1 mRNA and protein expression. PDGF increased phosphorylation of FAK, MEK1/2 and ERK1/2 even without cell adhesion to fibronectin, and induced MCP-1 mRNA and protein expression. PDGF with integrin activation by fibronectin synergistically increased phosphorylation of FAK, MEK1/2 and ERK1/2, and expression of MCP-1 mRNA and protein. Dominant-negative FAK attenuated fibronectin enhancement of PDGF-induced ERK1/2 phosphorylation and MCP-1 expression, indicating involvement of FAK in this signalling.
Conclusions.Our results suggest the cooperative role of integrin and PDGF receptor in activation of the ERK pathway possibly via FAK in MCs. The synergistic activation of integrin and PDGF signalling may play an important role in the progression of glomerular diseases through the induction of MCP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.