The aerodynamic characteristics of airfoils operating at Re = 4 X JO' were examined, varying the parameters related to the airfoil shape such as thickness, camber, and roughness. Airfoils with good aerodynamic performance at this Re have the following shape characteristics: (I) they are thinner than airfoils for higher Re numbers, (2) they have a sharp leading edge, and (3) they have a camber of about five percent with its maximum camber at about mid-chord. The characteristics of airfoils are .strongly affected by leading edge vortices. The measured two-dimensional airfoil characteristics indicate that the planform, which greatly affects the flight performance of the three-dimensional wing at high Reynolds numbers, has little effect on the flight performance at this Reynolds number. (B) Effect of the Wave Drag. The wave drag is strongly affected by the Froude number, F,. The Froude number, F,. = VoHgc, is 0.19 in this experiment. Wave drags of double-arc sections are shown by Havelock (1923) and Hoerner (1965). Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 09/15/2013 Terms of Use: http://asme.org/terms
The flight of a butterfly, Pieris melete, was observed in the take-off phase and was analyzed theoretically from aerodynamic and kinetic viewpoints. A vortex method, which was recently developed by the present authors, was used in this analysis. During the downstroke, the butterfly generates mainly a vertical force. The acceleration of the butterfly's body during the first half of the downstroke is especially large, and this acceleration is mainly caused by a large unsteady pressure drag acting on the wings. This large unsteady pressure drag is generated by the vortices shed into the flow from the outer edges of each wing of a pair; it is increased by the interference effect between a pair of wings when the opening angle is small. This force can be estimated by the previous quasi-steady analysis when the force coefficient is changed to 4. In addition to the unsteady pressure drag, an aerodynamic force due to added mass is generated and this is also increased by the interference effect between a pair of wings. During the upstroke the butterfly generates mainly a horizontal force. The change of direction of the forces during the down- and upstrokes is controlled by variation in the inclination of the stroke plane. The moment, which is created by the aerodynamic force acting on the wings and by abdominal motion, changes the thoracic angle, that is the inclination of the stroke plane.
SUMMARYThrips fly at a chord-based Reynolds number of approximately 10 using bristled rather than solid wings. We tested two dynamically scaled mechanical models of a thrips forewing. In the bristled design, cylindrical rods model the bristles of the forewing; the solid design was identical to the bristled one in shape, but the spaces between the `bristles' were filled in by membrane. We studied four different motion patterns: (i) forward motion at a constant forward velocity, (ii) forward motion at a translational acceleration, (iii) rotational motion at a constant angular velocity and (iv)rotational motion at an angular acceleration. Fluid-dynamic forces acting on the bristled model wing were a little smaller than those on the solid wing. Therefore, the bristled wing of a thrips cannot be explained in terms of increased fluid-dynamic forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.