Bronchiolitis obliterans syndrome (BOS), a process of fibro-obliterative occlusion of the small airways in the transplanted lung, is the most common cause of lung transplant failure. We tested the role of cell-mediated immunity to collagen type V [col(V)] in this process. PBMC responses to col(II) and col(V) were monitored prospectively over a 7-year period. PBMCs from lung transplant recipients, but not from healthy controls or col(IV)-reactive Goodpasture's syndrome patients after renal transplant, were frequently col(V) reactive. Col(V)-specific responses were dependent on both CD4+ T cells and monocytes and required both IL-17 and the monokines TNF-alpha and IL-1beta. Strong col(V)-specific responses were associated with substantially increased incidence and severity of BOS. Incidences of acute rejection, HLA-DR mismatched transplants, and induction of HLA-specific antibodies in the transplant recipient were not as strongly associated with a risk of BOS. These data suggest that while alloimmunity initiates lung transplant rejection, de novo autoimmunity mediated by col(V)-specific Th17 cells and monocyte/macrophage accessory cells ultimately causes progressive airway obliteration.
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.