Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis, microaerobiosis, and starvation. Global transcriptional profiling demonstrated that the clusters of genes within the symbiosis island (611 kb), a transmissible region distinct from other chromosomal regions, are collectively expressed during symbiosis, whereas genes outside the island are downregulated. This finding implies that the huge symbiosis island functions as clustered expression islands to support symbiotic nitrogen fixation. Interestingly, most transposase genes on the symbiosis island were highly upregulated in bacteroids, as were nif, fix, fdx, and rpoN. The genome region containing the fixNOPQ genes outside the symbiosis island was markedly upregulated as another expression island under both microaerobic and symbiotic conditions. The symbiosis profiling data suggested that there was activation of amino acid metabolism, as well as nif-fix gene expression. In contrast, genes for cell wall synthesis, cell division, DNA replication, and flagella were strongly repressed in differentiated bacteroids. A highly upregulated gene in bacteroids, mlr5932 (encoding 1-aminocyclopropane-1-carboxylate deaminase), was disrupted and was confirmed to be involved in nodulation enhancement, indicating that disruption of highly expressed genes is a useful strategy for exploring novel gene functions in symbiosis.Through the symbiotic nitrogen fixation process, bacteria belonging to the family Rhizobiaceae convert atmospheric dinitrogen (N 2 ) to ammonia (NH 3 ), which can be effectively used by host legume plants. The establishment of a rhizobiumlegume symbiosis requires induction of new developmental programs in the partners. The symbiotic interaction begins with signal exchanges of flavonoids and Nod factors (lipochitooligosaccharides) between the two partners (6). In legume nodules, microaerobic environments trigger the rhizobial expression of nitrogen-fixing genes, such as nif and fix, via an oxygen-sensing system (13). However, the establishment of nitrogen-fixing symbiosis probably requires more complex steps triggered by reciprocal signal exchanges that lead to the organogenesis of nodules, differentiation of microsymbionts, and efficacy of nodulation (27). In addition to this symbiotic lifestyle, rhizobia survive in soils with many environment stresses, such as nutrient starvation.Lotus japonicus is a promising model legume for studying molecular interactions between symbiosis partners (20). Schauser et al. (40) first identified the plant regulatory gene nin, which is responsible for the nodule organogenesis program, in this legume. Recently, the receptor-like kinase genes have...
Gene expression profiles during early stages of formation of symbiotic nitrogen-fixing nodules in a model legume Lotus japonicus were analyzed by means of a cDNA array of 18,144 non-redundant expressed sequence tags (ESTs) isolated from L. japonicus. Expression of a total of 1,076 genes was significantly accelerated during the successive stages that represent infection of Mesorhizobium loti, nodule primordium initiation, nodule organogenesis, and the onset of nitrogen fixation. These include 32 nodulin and nodulinhomolog genes as well as a number of genes involved in the catabolism of photosynthates and assimilation of fixed nitrogen that were previously known to be abundantly expressed in root nodules of many legumes. We also identified a large number of novel nodule-specific or enhanced genes, which include genes involved in many cellular processes such as membrane transport, defense responses, phytohormone synthesis and responses, signal transduction, cell wall synthesis, and transcriptional regulation. Notably, our data indicate that the gene expression profile in early steps of Rhizobium-legume interactions is considerably different from that in subsequent stages of nodule development. A number of genes involved in the defense responses to pathogens and other stresses were induced abundantly in the infection process, but their expression was suppressed during subsequent nodule formation. The results provide a comprehensive data source for investigation of molecular mechanisms underlying nodulation and symbiotic nitrogen fixation.
Kisspeptin-GPR54 signaling plays an essential role in normal reproduction in mammals via stimulation of gonadotropin secretion. Here, we cloned the porcine KISS1 cDNA from the hypothalamic tissue and investigated the effect of estrogen on the distribution and numbers of KISS1 mRNA-expressing cells in the porcine hypothalamus. The full length of the cDNA was 857 bp encoding the kisspeptin of 54 amino acids, with the C-terminal active motif designated kisspeptin-10 being identical to that of mouse, rat, cattle, and sheep. In situ hybridization analysis revealed that KISS1-positive cell populations were mainly distributed in the hypothalamic periventricular nucleus (PeN) and arcuate nucleus (ARC). KISS1 expression in the PeN of ovariectomized (OVX) pigs was significantly upregulated by estradiol benzoate (EB) treatment. On the other hand, KISS1-expressing cells were abundantly distributed throughout the ARC in both OVX and OVX with EB animals. The number of KISS1-expressing neurons was significantly lowered by EB treatment only in the most caudal part of the ARC, but other ARC populations were not affected. The present study thus suggests that the PeN kisspeptin neurons could be responsible for the estrogen positive feedback regulation to induce gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) surge in the pig. In addition, the caudal ARC kisspeptin neurons could be involved in the estrogen negative feedback regulation of GnRH/LH release. This is the first report of identification of porcine KISS1 gene and of estrogen regulation of KISS1 expression in the porcine brain, which may be helpful for better understanding of the role of kisspeptin in reproduction of the pig.
Homocitrate is a component of the iron-molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix(-) (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.