Necroptosis plays an important role in tumor genesis and progression. This study aims to identify necroptosis-related lncRNAs (NR-lncRNAs) in breast cancer (BC), and their prognostic value and relationship with the tumor immune environment (TIE) through bioinformatics. Methods. A total of 67 necroptosis-related genes (NRGs) are retrieved, and 13 prognostically relevant NR-lncRNAs are identified by co-expression and Univariate Cox regression analyses. After unsupervised clustering analysis, the patients are classified into three clusters, and their survival and immune infiltration are compared. Lasso regression analysis is conducted to construct a prognostic model using eight lncRNAs (USP30-AS1, AC097662.1, AC007686.3, AL133467.1, AP006284.1, NDUFA6-DT, LINC01871, AL135818.1). The model is validated by Kaplan-Meier survival analysis, Multivariate Cox regression analysis, and receiver-operating characteristic (ROC) curves. Correlation analysis is useful to identify associations between risk scores and clinicopathological features. GSEA, drug prediction, and immune checkpoints analysis are further used to differentiate between the risk groups. Results. The C3 cluster has longer overall survival (OS) and the highest immune score, indicative of an immunologically hot tumor that may be sensitive to immunotherapy. Furthermore, the OS is significantly higher in the low-risk group, even after dividing the patients into subgroups with different clinical characteristics. The area under the ROC curve (AUC) for 1-, 3-, and 5-year survival in the training set are 0.761, 0.734, and 0.664, respectively, which indicate the moderate predictive performance of the model. Conclusion. NR-lncRNAs can predict the prognosis of BC, distinguish between hot and cold tumors, and are potential predictive markers of the immunotherapy response.