NAD(P)H oxidase contributes to the pathogenesis of cancer and cardiovascular diseases such as hypertension, atherosclerosis, restenosis, cardiac hypertrophy and heart failure. Plumbagin, a plant-derived naphthoquinone, has been shown to exert anticarcinogenic and anti-atherosclerosis effects in animals. However, the molecular mechanisms underlying these effects remain unknown. It is possible that the beneficial effect of plumbagin is due to the inhibition of NAD(P)H oxidase. Human embryonic kidney 293 (HEK293) and brain tumour LN229 cells express mainly Nox-4, a renal NAD(P)H oxidase. We have examined the effect of plumbagin on Nox-4 activity in HEK293 and LN229 cells using lucigenin-dependent chemiluminescence assay. Plumbagin inhibited the activity of Nox-4 in a time- and dose-dependent manner in HEK293 and LN229 cells. Production of superoxide in HEK293 cells was inhibited by diphenyleneiodonium (DPI), a NAD(P)H oxidase inhibitor. The superoxide production in HEK293 cells was NADPH- and NADH-dependent indicating that the superoxide was generated by a NAD(P)H oxidase in HEK293 cells, but not by the redox-cycling of lucigenin. Furthermore, plumbagin inhibited the superoxide production in Nox-4 transfected COS-7 cells. These results indicated that plumbagin directly interacted with Nox-4 and inhibited its activity.
(2011) Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population, RNA Biology, 8:5,[861][862][863][864][865][866][867][868][869][870][871][872]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.