To further reduce the noise and artifacts in the reconstructed image of sparse-view CT, we have modified the traditional total variation (TV) methods, which only calculate the gradient variations in x and y directions, and have proposed 8- and 26-directional (the multi-directional) gradient operators for TV calculation to improve the quality of reconstructed images. Different from traditional TV methods, the proposed 8- and 26-directional gradient operators additionally consider the diagonal directions in TV calculation. The proposed method preserves more information from original tomographic data in the step of gradient transform to obtain better reconstruction image qualities. Our algorithms were tested using two-dimensional Shepp–Logan phantom and three-dimensional clinical CT images. Results were evaluated using the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and universal quality index (UQI). All the experiment results show that the sparse-view CT images reconstructed using the proposed 8- and 26-directional gradient operators are superior to those reconstructed by traditional TV methods. Qualitative and quantitative analyses indicate that the more number of directions that the gradient operator has, the better images can be reconstructed. The 8- and 26-directional gradient operators we proposed have better capability to reduce noise and artifacts than traditional TV methods, and they are applicable to be applied to and combined with existing CT reconstruction algorithms derived from CS theory to produce better image quality in sparse-view reconstruction.
Limited-angle iterative reconstruction (LAIR) reduces the radiation dose required for computed tomography (CT) imaging by decreasing the range of the projection angle. We developed an image-quality-based stopping-criteria method with a flexible and innovative instrument design that, when combined with LAIR, provides the image quality of a conventional CT system. This study describes the construction of different scan acquisition protocols for micro-CT system applications. Fully-sampled Feldkamp (FDK)-reconstructed images were used as references for comparison to assess the image quality produced by these tested protocols. The insufficient portions of a sinogram were inpainted by applying a context encoder (CE), a type of generative adversarial network, to the LAIR process. The context image was passed through an encoder to identify features that were connected to the decoder using a channel-wise fully-connected layer. Our results evidence the excellent performance of this novel approach. Even when we reduce the radiation dose by 1/4, the iterative-based LAIR improved the full-width half-maximum, contrast-to-noise and signal-to-noise ratios by 20% to 40% compared to a fully-sampled FDK-based reconstruction. Our data support that this CE-based sinogram completion method enhances the efficacy and efficiency of LAIR and that would allow feasibility of limited angle reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.