Medication is designed to cure diseases, but serious risks can arise from severe adverse drug reactions (ADRs). ADRs can lead to emergency room visits and hospitalization, straining healthcare resources and, thus, they have strong implications for public health. Stevens–Johnson Syndrome (SJS) is one ADR and comprises the highest proportion of all drug relief cases in Taiwan. Pharmacovigilance involves the collection, detection, assessment, monitoring, and prevention of ADRs, including SJS. Most medical specialists are not fully aware of the risk of drug-induced SJS. Consequently, various drugs may be prescribed to susceptible patients for a great variety of diseases and, in turn, cause SJS. In this research, medical records of SJS patients were retrieved from the Taiwan National Health Insurance Research Database, and the Generalized Sequential Patterns (GSP) algorithm was used to find the sequential patterns of diseases before SJS onset. Then we mined the sequential patterns of medications prescribed in each disease pattern. Afterwards, we detected significant associations of each pattern of diseases and medications prescribed among age groups with statistical analysis. We found that, first, most patients developed SJS after being prescribed the causative medications fewer than four times. Second, Respiratory System Diseases (RSDs) appeared in disease sequential patterns of all lengths. Patterns involving RSDs were more frequent than others. Third, NSAIDs, H2-antagonists for peptic ulcer, penicillin antibiotics, theophylline bronchodilators, and cephalosporin antibiotics were the most frequent medications prescribed. Fourth, we found that patients in certain age groups had higher risks of developing SJS. This study aimed to mine the sequential patterns of diseases contracted and medications prescribed before patients developed SJS in Taiwan. This useful information can be provided to physicians so that they can stop the administration of suspected drugs to avoid evolution towards more severe cases.
The automotive industry is the leading producer of machines in Taiwan and worldwide. Developing effective methods for forecasting car sales can allow car companies to arrange their production and sales plans. Capitalizing on the growth of social media and deep learning algorithms, this research aimed to improve the overall performance of the forecasting of Taiwan car sales movement direction forecasting by using online sentiment data and CNN-LSTM method. First, the historical sales volumes and multi-channel online sentiment data for six car brands in Taiwan were collected and preprocessed for labeling of car sales movement direction. Then, three models, namely, the classical, sentimental, and CNN-LSTM models, were constructed and trained/fitted for forecasting car sales movement directions in Taiwan. Finally, the performance of the three prediction models were compared to verify the effects of online sentiment data and the CNN-LSTM model on forecasting performance. The results showed that four forecasting performance indices, i.e., accuracy, precision, recall and F1-score, improved by 27.78% (from 41.67% to 69.45%), 0.39 (from 0.38 to 0.77), 0.27 (from 0.42 to 0.69) and 0.33 (from 0.35 to 0.68), respectively. Therefore, the online sentiment data and CNN-LSTM method can indeed improve the overall performance of car sales movement direction in Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.