In indoor environment, often time there always exist moving objects such as people or other service robots. For indoor service robot, they may follow a priori to patrol or help people to delivery so that it is fundamental and essential to achieve the destination without collision. In this paper, we aim at developing the collision-free algorithm by using kinematics-based method. Based on the model developed, we propose the collision-free conditions to find out proper via-postures. While the conditions are satisfied, the relative distance between the robot and the moving obstacle will be guaranteed, the collision vanishes and via-postures are derived from the condition as well. To enhance robot collision avoidance behavior, we make efforts on the following requirements: (1) smooth collision-free paths (2) situation-dependant path selection mechanism (3) redirection to the priori to conduct the tasks continuously. The justifications and approaches used for all the requirements are stated and discussed. Simulations and experimental results are made to demonstrate the feasibility and applicability of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.