Most reports regarding unplanned extubation (UE) are case-control studies with matching age and disease severity. To avoid diminishing differences in matched factors, this study with only matching duration of mechanical ventilation aimed to re-examine the risk factors and the factors governing outcomes of UE in intensive care units (ICUs). This case-control study was conducted on 1,775 subjects intubated for mechanical ventilation. Thirty-seven (2.1%) subjects with UE were identified, and 156 non-UE subjects were randomly selected as the control group. Demographic data, acute Physiological and Chronic Health Evaluation II (APACHE II) scores, and outcomes of UE were compared between the two groups. Logistic regression analysis was used to identify the risk factors of UE. Milder disease, younger age, and higher Glasgow Coma Scale (GCS) scores with more frequently being physically restrained (all p<0.05) were related to UE. Logistic regression revealed that APACHE II score (odds ratio (OR) 0.91, p<0.01), respiratory infection (OR 0.24, p<0.01), physical restraint (OR 5.36, p<0.001), and certain specific diseases (OR 3.79–5.62, p<0.05) were related to UE. The UE patients had a lower ICU mortality rate (p<0.01) and a trend of lower in-hospital mortality rate (p = 0.08). Cox regression analysis revealed that in-hospital mortality was associated with APACHE II score, age, shock, and oxygen used, all of which were co-linear, but not UE. The results showed that milder disease with higher GCS scores thereby requiring a higher use of physical restraints were related to UE. Disease severity but not UE was associated with in-hospital mortality.
Background Metabolic acidosis is a major complication of critical illness. However, its current epidemiology and its treatment with sodium bicarbonate given to correct metabolic acidosis in the ICU are poorly understood. Method This was an international retrospective observational study in 18 ICUs in Australia, Japan, and Taiwan. Adult patients were consecutively screened, and those with early metabolic acidosis (pH < 7.3 and a Base Excess < –4 mEq/L, within 24-h of ICU admission) were included. Screening continued until 10 patients who received and 10 patients who did not receive sodium bicarbonate in the first 24 h (early bicarbonate therapy) were included at each site. The primary outcome was ICU mortality, and the association between sodium bicarbonate and the clinical outcomes were assessed using regression analysis with generalized linear mixed model. Results We screened 9437 patients. Of these, 1292 had early metabolic acidosis (14.0%). Early sodium bicarbonate was given to 18.0% (233/1292) of these patients. Dosing, physiological, and clinical outcome data were assessed in 360 patients. The median dose of sodium bicarbonate in the first 24 h was 110 mmol, which was not correlated with bodyweight or the severity of metabolic acidosis. Patients who received early sodium bicarbonate had higher APACHE III scores, lower pH, lower base excess, lower PaCO2, and a higher lactate and received higher doses of vasopressors. After adjusting for confounders, the early administration of sodium bicarbonate was associated with an adjusted odds ratio (aOR) of 0.85 (95% CI, 0.44 to 1.62) for ICU mortality. In patients with vasopressor dependency, early sodium bicarbonate was associated with higher mean arterial pressure at 6 h and an aOR of 0.52 (95% CI, 0.22 to 1.19) for ICU mortality. Conclusions Early metabolic acidosis is common in critically ill patients. Early sodium bicarbonate is administered by clinicians to more severely ill patients but without correction for weight or acidosis severity. Bicarbonate therapy in acidotic vasopressor-dependent patients may be beneficial and warrants further investigation.
According to statistics, up to 40% of emergency admissions are due to chest tightness or chest pain. However, merely based on the patient’s current symptoms such as chest pain, it is difficult for a physician to give an instant diagnosis as most cardiovascular diseases are chronic. To address this issue, it is necessary to provide a set of tools to indicate the patient’s status during hospitalization to help the physician in diagnosis. It is thus our primary objective to design and develop a wearable heart rate monitoring system and prediction tool that can measure the patient’s heart rate parameters, allow him/her to move around easily, and which also can effectively improve the medical personnel’s working efficiency. This research utilizes conductive filament to design textile to integrate electric circuit with clothing. Using a conductive vest and chest belt that can be worn comfortably, our system can continuously record patients’ physiological index parameters during their hospitalization. Physiological index parameters of multiple patients can then be transmitted wirelessly and recorded in a physician-end computer. At the end of their hospitalization, the patient’s original physiological indices together with the recorded heart rate variability (HRV) parameters can then be summarized to assess the risk score of their discharging from hospital. This paper adopts the concept of TIMI risk score, while adding every index of HRV measured when subjects are hospitalized. The risk score can hence be used to provide emergency physicians as a basis for an early prognosis and subsequently a better hospital-discharging assessment of patients with chest pain. The accuracy of the proposed prognosis has been verified with the 3-day and 30-day recall rate of the patients and the result has been shown to be promising for chest pain patients in emergency admission units.
BackgroundImpaired peripheral oxygenation (IPO)-related variables readily achieved with cardiopulmonary exercise testing (CPET) represent cardiovascular dysfunction. These variables include peak oxygen uptake ( (normalV˙O2)<85% predicted, anaerobic threshold <40%normalV˙O2max predicted, normalV˙O2-work rate slope <8.6 mL/watt, oxygen pulse <80% predicted, and ventilatory equivalents for O2 and CO2 at nadir of >31 and >34, respectively. Some of these six variables may be normal while the others are abnormal in patients with chronic obstructive pulmonary disease (COPD). This may result in confusion when using the interpretation algorithm for diagnostic purposes. We therefore hypothesized that patients found to have abnormal values for all six variables would have worse cardiovascular function than patients with abnormal values for none or some of these variables.MethodsIn this cross-sectional comparative study, 58 COPD patients attending a university teaching hospital underwent symptom-limited CPET with multiple lactate measurements. Patients with abnormal values in all six IPO-related variables were assigned to an IPO group while those who did not meet the requirements for the IPO group were assigned to a non-IPO group. Cardiovascular function was measured by two-dimensional echocardiography and Δlactate/ΔnormalV˙O2, and respiratory dynamics were compared between the two groups.ResultsFourteen IPO and 43 non-IPO patients were entered into the study. Both groups were similar with regard to left ventricular ejection fraction and right ventricular morphology (P>0.05 for both). At peak exercise, both groups reached a similar heart rate level and Δlactate/ΔnormalV˙O2. The IPO patients had an unfavorable dead space to tidal volume ratio, mean inspiratory tidal flow, and shallow breathing (P<0.05–P<0.001).ConclusionOur IPO and non-IPO patients with COPD had similar cardiovascular performance at rest and at peak exercise, indicating that IPO variables are non-specific for cardiovascular function in these patients. COPD patients with full IPO variables have more deranged ventilatory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.