Abstract-An adaptive time-frequency representation (TFR) with higher energy concentration usually requires higher complexity. Recently, a low-complexity adaptive short-time Fourier transform (ASTFT) based on the chirp rate has been proposed. To enhance the performance, this method is substantially modified in this paper: i) because the wavelet transform used for instantaneous frequency (IF) estimation is not signal-dependent, a low-complexity ASTFT based on a novel concentration measure is addressed; ii) in order to increase robustness to IF estimation error, the principal component analysis (PCA) replaces the difference operator for calculating the chirp rate; and iii) a more robust Gaussian kernel with time-frequency-varying window width is proposed. Simulation results show that our method has higher energy concentration than the other ASTFTs, especially for multicomponent signals and nonlinear FM signals. Also, for IF estimation, our method is superior to many other adaptive TFRs in low signal-to-noise ratio (SNR) environments.
The permutation test is an often used test procedure in brain imaging. Unfortunately, generating every possible permutation for largescale brain image datasets such as HCP and ADNI with hundreds images is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributions. In this study, we show how to rapidly accelerate the permutation test without any type of approximate strategies by exploiting the underlying algebraic structure of the permutation group. The method is applied to large number of MRIs in two applications: (1) localizing the male and female differences and (2) localizing the regions of high genetic heritability in the sulcal and gyral pattern of the human cortical brain.
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and one discrete chirp convolution (CC). This decomposition doesn't use any scaling operation which will change the sampling period or cause the interpolation error. Compared with previous works, DLCT calculated by direct summation and DLCT based on center discrete dilated Hermite functions (CDDHFs), the proposed method implemented by FFTs has much lower computational complexity. The relation between the proposed DLCT and the continuous LCT is also derived to approximate the samples of the continuous LCT. Simulation results show that the proposed method somewhat outperforms the CDDHFs-based method in the approximation accuracy. Besides, the proposed method has approximate additivity property with error as small as the CDDHFs-based method. Most importantly, the proposed method has perfect reversibility, which doesn't hold in many existing DLCTs. With this property, it is unnecessary to develop the inverse DLCT additionally because it can be replaced by the forward DLCT.
Heat diffusion has been widely used in brain imaging for surface fairing, mesh regularization and cortical data smoothing. Motivated by diffusion wavelets and convolutional neural networks on graphs, we present a new fast and accurate numerical scheme to solve heat diffusion on surface meshes. This is achieved by approximating the heat kernel convolution using high degree orthogonal polynomials in the spectral domain. We also derive the closed-form expression of the spectral decomposition of the Laplace-Beltrami operator and use it to solve heat diffusion on a manifold for the first time. The proposed fast polynomial approximation scheme avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large mesh size, and the numerical instability associated with the finite element method based diffusion solvers. The proposed method is applied in localizing the male and female differences in cortical sulcal and gyral graph patterns obtained from MRI in an innovative way. The MATLAB code is available at http://www.stat.wisc.edu/ ∼ mchung/chebyshev.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.