Extracellular adenosine triphosphate (ATP) released by mucosal immune cells and by microbiota in the intestinal lumen elicits diverse immune responses that mediate the intestinal homeostasis via P2 purinergic receptors, while overactivation of ATP signaling leads to mucosal immune system disruption, which leads to pathogenesis of intestinal inflammation. In the small intestine, hydrolysis of luminal ATP by ectonucleoside triphosphate diphosphohydrolase (E-NTPD)7 in epithelial cells is essential for control of the number of T helper 17 (Th17) cells. However, the molecular mechanism by which microbiota-derived ATP in the colon is regulated remains poorly understood. Here, we show that E-NTPD8 is highly expressed in large-intestinal epithelial cells and hydrolyzes microbiota-derived luminal ATP. Compared with wild-type mice, Entpd8−/− mice develop more severe dextran sodium sulfate–induced colitis, which can be ameliorated by either the depletion of neutrophils and monocytes by injecting with anti–Gr-1 antibody or the introduction of P2rx4 deficiency into hematopoietic cells. An increased level of luminal ATP in the colon of Entpd8−/− mice promotes glycolysis in neutrophils through P2x4 receptor–dependent Ca2+ influx, which is linked to prolonged survival and elevated reactive oxygen species production in these cells. Thus, E-NTPD8 limits intestinal inflammation by controlling metabolic alteration toward glycolysis via the P2X4 receptor in myeloid cells.
Extracellular adenosine 5’-triphosphate (ATP) performs multiple functions including activation and induction of apoptosis of many cell types. The ATP-hydrolyzing ectoenzyme ecto-nucleotide pyrophosphatase/phosphodiesterase 3 (E-NPP3) regulates ATP-dependent chronic allergic responses by mast cells and basophils. However, E-NPP3 is also highly expressed on epithelial cells of the small intestine. In this study, we showed that E-NPP3 controls plasmacytoid dendritic cell (pDC) numbers in the intestine through regulation of intestinal extracellular ATP. In Enpp3-/- mice, ATP concentrations were increased in the intestinal lumen. pDC numbers were remarkably decreased in the small intestinal lamina propria and Peyer’s patches. Intestinal pDCs of Enpp3-/- mice showed enhanced cell death as characterized by increases in annexin V binding and expression of cleaved caspase-3. pDCs were highly sensitive to ATP-induced cell death compared with conventional DCs. ATP-induced cell death was abrogated in P2rx7-/- pDCs. Accordingly, the number of intestinal pDCs was restored in Enpp3-/- P2rx7-/- mice. These findings demonstrate that E-NPP3 regulates ATP concentration and thereby prevents the decrease of pDCs in the small intestine.
Abdominal wall endometrioma (AWE) is a rare condition (incidence 1% following caesarean section) with a significant variation in clinical symptoms, imaging findings and interval between initial procedure and diagnosis. We present two cases with differing clinical presentations. AWE may be difficult to diagnose pre-operatively, with as many as 75% of lesions diagnosed incorrectly prior to surgical excision. Ultrasonography is a useful tool in determining the extent of the endometrioma and can help exclude differential diagnosis such as hernia. Ultrasound appearance of AWE is often variable; however, the most common presentation is of a solid hypoechoic mass lesion with peripheral vascularity. Margins may be irregular and infiltrate the surrounding soft tissues. Lesions may be cystic or multicystic or may have both solid and cystic components. Power Doppler may demonstrate internal vascularity. If ultrasound findings are inconclusive, computed tomography (CT) or magnetic resonance imaging (MRI) should be considered to assist in making the diagnosis. Ultrasound-guided fine needle aspiration of the lesion may assist in the diagnosis, but seeding of the needle tract has been reported and must be included in the resection margins. Sonoelastography has shown some promise in early studies for improving diagnostic accuracy for AWE.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.