We study a new type of effective interactions in terms of the CP T -even dimension-six Chern-Simons-like term, which could originate from superstring theory, to generate the cosmological birefringence. We use the neutrino number asymmetry to induce a sizable rotation polarization angle in the data of the cosmic microwave background radiation polarization. The combined effect of the new term and the neutrino asymmetry provides an alternative way to understand the birefringence.
We study a new scenario for baryogenesis due to the spontaneous breaking of the CP T invariance through the interaction between a baryon current and a hypermagnetic helicity. The hypermagnetic helicity (Chern-Simons number) of U (1) Y provides a CP T violation background for the generation of baryons via sphaleron processes, which protects these baryons from the sphaleron wash-out effect in thermal equilibrium. It is shown that if the present amplitude of the resultant magnetic fields are sufficiently large, for a wide range mass scale (from TeV to the Planck scale), the observational magnitude of the baryon asymmetry of the Universe can be realized.
We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman-Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits-which always decohere completely in all Ohmic-like environments-topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.