A series of straight-chain oligoarylamines were synthesized and examined by electrochemical, spectroelectrochemical, electron paramagnetic resonance techniques, and density functional theory (DFT) calculation. Depending on their electrochemical characteristics, these oligoarylamines were classified into two groups: one containing an odd number and the other an even number of redox centers. In the systems with odd redox centers (N1, N3, and N5), each oxidation was associated with the loss of one electron. As for the systems with even redox centers (N2, N4, and N6), oxidation occurred by taking N2 as a unit. Absorption spectra of linear oligoarylamines at various oxidative states were obtained to investigate their charge transfer behaviors. Moreover, DFT-computed isotropic hyperfine coupling constants and spin density were in accordance with the EPR experiment, and gave a close examination of oligoarylamines at charged states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.