In this study, a tunable terahertz (THz) metamaterial using the micro-electro-mechanical system (MEMS) technique is proposed to demonstrate pressure sensing application. This MEMS-based tunable metamaterial (MTM) structure is composed of gold (Au) split-ring resonators (SRRs) on patterned silicon (Si) substrate with through Si via (TSV). SRR is designed as a cantilever on the TSV structure. When the airflow passes through the TSV from bottom to up and then bends the SRR cantilever, the SRR cantilever will bend upward. The electromagnetic responses of MTM show the tunability and polarization-dependent characteristics by bending the SRR cantilever. The resonances can both be blue-shifted from 0.721 THz to 0.796 THz with a tuning range of 0.075 THz in transverse magnetic (TM) mode and from 0.805 THz to 0.945 THz with a tuning range of 0.140 THz in transverse electric (TE) mode by changing the angle of SRR cantilever from 10° to 45°. These results provide the potential applications and possibilities of MTM design for use in pressure and flow rate sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.