Manufacturing text often exists as unlabeled data; the entity is fine-grained and the extraction is difficult. The above problems mean that the manufacturing industry knowledge utilization rate is low. This paper proposes a novel Chinese fine-grained NER (named entity recognition) method based on symmetry lightweight deep multinetwork collaboration (ALBERT-AttBiLSTM-CRF) and model transfer considering active learning (MTAL) to research fine-grained named entity recognition of a few labeled Chinese textual data types. The method is divided into two stages. In the first stage, the ALBERT-AttBiLSTM-CRF was applied for verification in the CLUENER2020 dataset (Public dataset) to get a pretrained model; the experiments show that the model obtains an F1 score of 0.8962, which is better than the best baseline algorithm, an improvement of 9.2%. In the second stage, the pretrained model was transferred into the Manufacturing-NER dataset (our dataset), and we used the active learning strategy to optimize the model effect. The final F1 result of Manufacturing-NER was 0.8931 after the model transfer (it was higher than 0.8576 before the model transfer); so, this method represents an improvement of 3.55%. Our method effectively transfers the existing knowledge from public source data to scientific target data, solving the problem of named entity recognition with scarce labeled domain data, and proves its effectiveness.
Companies accumulate a large amount of production process data during product manufacturing. Sequence data from the mining production process can enable a company to evaluate the manufacturing process, to find the key factors affecting product quality, and to improve product quality. However, the production process mainly exists in the form of text. To solve this problem, we propose a novel frequent pattern mining algorithm (EABMC) based on the text context semantics and rules of the manufacturing process to remove redundant sequences and to obtain good mining results. In this algorithm, first, we use embeddings from language models (ELMo ) to improve the process of text similarity matching and to classify similar semantic processes into one class. Then, the manufacturing process unit (MPU) is proposed by extracting the characteristics of manufacturing process data according to the constraints of the manufacturing process and other conditions. The above two steps cause the complex manufacturing process sequence to merge and simplify. Once again, a frequent pattern mining algorithm (CloFAST) is used to explore the important manufacturing process relationships behind a large amount of manufacturing data. In addition, taking the data from a production enterprise in Guizhou Province as an example, the validity of the method is verified. Compared with other methods, this method is shown to have greater mining efficiency and better results and can find out the key factors that affect product quality, especially for text data.
Neonatal brain tumor is rare and its outcome is generally poor. We reported a 17-day-old neonate presented as enlarged head girth. The pathological finding showed an embryonal tumor with multilayered rosettes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.