We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the simplest version of an f(T) matter bounce, we investigate the scalar and tensor modes of cosmological perturbations. Our results show that metric perturbations in the scalar sector lead to a background-dependent sound speed, which is a distinguishable feature from Einstein gravity. Additionally, we obtain a scale-invariant primordial power spectrum, which is consistent with cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio. However, this can be avoided by introducing extra fields, such as a matter bounce curvaton.Communicated by P R L V Moniz
We investigate the cosmological perturbations in f (T ) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f (T ) ansatzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f (T ) gravity with f (T ) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from ΛCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f (T ) gravity is free of massive gravitons.
Exact analytic solutions for a class of scalar-tensor gravity theories with a hyperbolic scalar potential are presented. Using an exact solution we have successfully constructed a model of inflation that produces the spectral index, the running of the spectral index and the amplitude of scalar perturbations within the constraints given by the WMAP 7 years data.The model simultaneously describes the Big Bang and inflation connected by a specific time delay between them so that these two events are regarded as dependent on each other. In solving the Fridemann equations, we have utilized an essential Weyl symmetry of our theory in 3+1 dimensions which is a predicted remaining symmetry of 2T-physics field theory in 4+2 dimensions. This led to a new method of obtaining analytic solutions in 1T field theory which could in principle be used to solve more complicated theories with more scalar fields. Some additional distinguishing properties of the solution includes the fact that there are early periods of time when the slow roll approximation is not valid. Furthermore, the inflaton does not decrease monotonically with time, rather it oscillates around the potential minimum while settling down, unlike the slow roll approximation. While the model we used for illustration purposes is realistic in most respects, it lacks a mechanism for stopping inflation. The technique of obtaining analytic solutions opens a new window for studying inflation, and other applications, more precisely than using approximations. 98.80.Cq,
We present analytic solutions to a class of cosmological models described by a canonical scalar field minimally coupled to gravity and experiencing self interactions through a hyperbolic potential. Using models and methods inspired by 2T-physics, we show how analytic solutions can be obtained in flat/open/closed Friedmann-Robertson-Walker universes.Among the analytic solutions, there are many interesting geodesically complete cyclic solutions in which the universe bounces at either zero or finite sizes. When geodesic completeness is imposed, it restricts models and their parameters to a certain parameter subspace, including some quantization conditions on initial conditions in the case of zero-size bounces, but no conditions on initial conditions for the case of finite-size bounces. We will explain the theoretical origin of our model from the point of view of 2T-gravity as well as from the point of view of the colliding branes scenario in the context of M-theory. We will indicate how to associate solutions of the quantum Wheeler-deWitt equation with our classical analytic solutions, mention some physical aspects of the cyclic solutions, and outline future directions. 98.80.Cq,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.