Electricity demand forecasting plays an important role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate prediction of electricity demands is therefore vital. In this study, artificial neural networks (ANNs) trained by different heuristic algorithms, including Gravitational Search Algorithm (GSA) and Cuckoo Optimization Algorithm (COA), are utilized to estimate monthly electricity demands. The empirical data used in this study are the historical data affecting electricity demand, including rainy time, temperature, humidity, wind speed, etc. The proposed models are applied to Hanoi, Vietnam. Based on the performance indices calculated, the constructed models show high forecasting performances. The obtained results also compare with those of several well-known methods. Our study indicates that the ANN-COA model outperforms the others and provides more accurate forecasting than traditional methods.
Forecasting short-term traffic flow is a key task of intelligent transportation systems, which can influence the traveler behaviors and reduce traffic congestion, fuel consumption, and accident risks. This paper proposes a fuzzy wavelet neural network (FWNN) trained by improved biogeography-based optimization (BBO) algorithm for forecasting short-term traffic flow using past traffic data. The original BBO is enhanced by the ring topology and Powell's method to advance the exploration capability and increase the convergence speed. Our presented approach combines the strengths of fuzzy logic, wavelet transform, neural network, and the heuristic algorithm to detect the trends and patterns of transportation data and thus has been successfully applied to transport forecasting. Other different forecasting methods, including ANN-based model, FWNN-based model, and WNN-based model, are also developed to validate the proposed approach. In order to make the comparisons across different methods, the performance evaluation is based on root-mean-squared error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R). The performance indexes show that the FWNN model achieves lower RMSE and MAPE, as well as higher R, indicating that the FWNN model is a better predictor.
Predictions of cutting vibrations are necessary for improving the operational efficiency, product quality, and safety in the machining process, since the vibration is the main factor for resulting in machine faults. "Cutting vibration" may be caused by setting incorrect parameters before machining is commenced and may affect the precision of the machined work piece. This raises the need to have an effective model that can be used to predict cutting vibrations. In this study, an artificial neural network (ANN) model to forecast and classify the cutting vibration of the intelligent machine tool is presented. The factors that may cause cutting vibrations is firstly identified and a dataset for the research purpose is constructed. Then, the applicability of the model is illustrated. Based on the results in the comparative analysis, the artificial neural network approach performed better than the others. Because the vibration can be forecasted and classified, the product quality can be managed. This work may help new workers to avoid operating machine tools incorrectly, and hence can decrease manufacturing costs. It is expected that this study can enhance the performance of machine tools in metalworking sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.