Abstract:The ability to inhibit impulses and withdraw certain responses are essential for human's survival in a fast-changing environment. These processes happen fast, in a complex manner, and require our brain to make a fast adaptation to inhibit the impulsive response. The present study employs multiscale entropy (MSE) to analyzing electroencephalography (EEG) signals acquired alongside a behavioral stop-signal task to theoretically quantify the complexity (indicating adaptability and efficiency) of neural systems to investigate the dynamical change of complexity in the brain during the processes of inhibitory control. We found that the complexity of EEG signals was higher for successful than unsuccessful inhibition in the stage of peri-stimulus, but not in the pre-stimulus time window. In addition, we found that the dynamical change in the brain from pre-stimulus to peri-stimulus stage for inhibitory control is a process of decreasing complexity. We demonstrated both by sensor-level and source-level MSE that the processes of losing complexity is temporally slower and spatially restricted for successful inhibition, and is temporally quicker and spatially extensive for unsuccessful inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.