The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when GRIP1 or SRC-1a was coexpressed. Thus, CARM1 functions as a secondary coactivator through its association with p160 coactivators. CARM1 can methylate histone H3 in vitro, and a mutation in the putative S-adenosylmethionine binding domain of CARM1 substantially reduced both methyltransferase and coactivator activities. Thus, coactivator-mediated methylation of proteins in the transcription machinery may contribute to transcriptional regulation.
Cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as p21Cip1/Waf1, is a master downstream effector of tumor suppressors. In this study, we experimentally demonstrate through a high-throughput luciferase reporter screen that p21Cip1/Waf1 can be directly targeted by nearly 28 microRNAs (miRNAs). The results were further confirmed by a series of mutational analyses and luciferase reporter assays. These 28 miRNAs can substantially inhibit p21Cip1/Waf1 expression, predominantly at translational level. Many of these miRNAs were upregulated in cancers and might serve as modulators of oncogenesis. Furthermore, 8 of these 28 p21-regulating miRNAs are located in the chromosome 19 miRNA cluster, the largest miRNA gene cluster in humans, and they can clearly promote cell proliferation and cell-cycle progression in choriocarcinoma cells. In conclusion, our screening strategy provides an alternative approach to uncovering miRNA modulators of an individual mRNA, and it has identified multiple miRNAs that can suppress p21Cip1/Waf1 expression by directly targeting its 3 0 untranslated region.
Members of the p160 coactivator family (steroid receptor coactivator-1 (SRC-1), glucocorticoid receptor interacting protein 1 (GRIP1), and activator of thyroid and retinoic acid receptors (ACTR)) mediate transcriptional activation by nuclear receptors. After being recruited to the promoter by nuclear receptors, the p160 coactivator transmits the activating signal via two C-terminal activation domains, AD1 and AD2. AD1 is a binding site for the related coactivators cAMP-response element binding protein binding protein (CBP) and p300, whereas AD2 binds to another coactivator, coactivator-associated arginine methyltransferase 1 (CARM1), a proteinarginine methyltransferase. The current study explored the cooperative functional and mechanistic relationships among GRIP1, CARM1, and p300 in transient transfection assays, where they enhanced the ability of the estrogen receptor (ER) to activate transcription of a reporter gene. The coactivator functions of p300 and CARM1 depended on the co-expression of GRIP1. Simultaneous co-expression of all three coactivators caused a synergistic enhancement of ER function. Deletion of the AD1 domain of GRIP1 abolished the ability of p300 to potentiate ER activity but had no effect on CARM1-mediated stimulation. In contrast, when the AD2 domain of GRIP1 was deleted, p300 still stimulated ER function through the mutant GRIP1, but CARM1 failed to do so. Thus, both binding of p300 to AD1 and binding of CARM1 to AD2 are required for their respective coactivator functions and for their synergy. Furthermore, CARM1 and p300 function independently through different activating domains of GRIP1, and their synergy suggests that they enhance transcription by different, complementary mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.