In this study, the affinity of two different cell types toward a specific cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg or GFOGER) derived from type I collagen using peptide template (PT)-assembled collagen peptides of different triple helicity as a model for natural collagen is examined. A series of biophysical studies, including melting curve analysis and circular dichroism spectroscopy, demonstrated the presence of stable triple-helical conformation in the PT-assembled (GPO)3-GFOGER-(GPO)3, (GPO)-GFOGER-(GPO), and (Pro-Hyp-Gly)5 solution. Conversely, non-templated peptides, except (GPO)3-GFOGER-(GPO)3, showed no evidence of assembly into triple-helical structure. Biological assays, including cell adhesion, competitive inhibition, and immunofluorescence staining, revealed a correlation of triple-helical conformation with the cellular recognition of GFOGER in an integrin-specific manner. The triple helix was shown to be important, but not crucial for cell adhesion to native collagen. Hep3B and L929 cells displayed significant differences in the recognition of GFOGER, mainly because of the differences in their expression of specific integrin receptors for collagen. For example, PT-assembled (GPO)3-GFOGER-(GPO)3 was shown to perform comparably to collagen for L929, but not Hep3B, cell adhesion. The result showed that a specific cell binding motif may not fully mimic the extracellular matrix (ECM) microenvironment, suggesting the need to use a combination of two or more cell binding sequences for targeting a wide range of integrin receptors expressed by a specific cell type to better mimic the ECM.
This study focused on mimicking collagen structurally and biologically using various peptide sequences toward realizing an artificial collagen-like biomaterial. Collagen-mimetic peptides (CMPs) incorporating integrin-specific glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) sequence from residues 502 to 507 of collagen alpha(1)(I) were used as a bioadhesive matrix and grafted onto poly(3-hydroxybutyrate-co3-hydroxyvalerate) microspheres to optimize cell adhesion, proliferation, and functions. Cell recognition of these biomolecules appeared to be conformation dependent, with the CMP1 of higher triple helix stability being preferred. Absence of the GFOGER hexapeptide in the CMP1' and CMP2' caused an adverse effect on the level of cell adhesion (<10%). The GFOGER-containing triple-helical CMPs effectively inhibited cell adhesion to collagen in a competition assay. The cell-adhesion activity of the CMP1 was approximately 50% of that of collagen. The cell spreading on the CMP1 was comparable with that observed on collagen. The presence of the CMP1 promoted cell attachment and spreading on the microspheres and extensive cell proliferation and bridging. Slower cell proliferation was observed on the blank microspheres. Live-dead assay showed that most cells are viable after 10-day culture. The presence of CMP1 on the microspheres maintained the albumin secretion and P-450 activity levels of the liver cells for up to 14 days. Our results established the potential of CMP1 to create a collagen-like microenvironment for optimizing cellular responses for liver tissue engineering.
Most proteins fold into specific structures to exert their biological functions, and therefore the creation of protein-like molecular architecture is a fundamental prerequisite toward realizing a novel biologically active protein-like biomaterial. To do this with an artificial collagen, we have engineered a peptide template characterized by its collagen-like primary structure composed of Gly-Phe-Gly-Glu-Glu-Gly sequence to assemble (Pro-Hyp-Gly)n (n = 3 and 5) into triple-helical conformations that resemble the native structure of collagen. The peptide template has three carboxyl groups connected to the N-termini of three collagen peptides. The coupling was accomplished by a simple and direct branching protocol without complex strategies. A series of biophysical studies, including melting curve analyses and CD and NMR spectroscopy, demonstrated the presence of stable triple-helical conformation in the template-assembled (Pro-Hyp-Gly)3 and (Pro-Hyp-Gly)5 solution. Conversely, nontemplated peptides showed no evidence of assembly of triple-helical structure. A cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg) derived from the collagen alpha1(I) chain was incorporated to mimic the integrin-specific cell adhesion of collagen. Cell adhesion and inhibition assays and immunofluorescence staining revealed a correlation of triple-helical conformation with cellular recognition of collagen mimetics in an integrin-specific way. This study offers a robust strategy for engineering native-like peptide-based biomaterials, fully composed of only amino acids, by maintaining protein conformation integrity and biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.