The disulfide linkages of two etanercept products, Enbrel® (innovator drug) and TuNEX®, were characterized and compared using a multi-fragmentation approach consisting of electron transfer dissociation (ETD) and collision induced dissociation (CID) in combination with multi-enzyme digestion protocols (from Lys-C, trypsin, Glu-C, and PNGase F). Multi-fragmentation approach allowed multi-disulfide linkages contained in a peptide to be un-ambiguously assigned based on the cleavage of both the disulfide and the backbone linkages in a MS
3
schedule. New insights gained using this approach were discussed. A total of 29 disulfides, Cys18-Cys31, Cys32-Cys45, Cys35-Cys53, Cys56-Cys71, Cys74-Cys88, Cys78-Cys-96, Cys98-Cys104, Cys112-Cys121, Cys115-Cys139, Cys-142-Cys157, Cys163-Cys178 in TNFR portion and Cys240-Cys240, Cys246-Cys246, Cys249-Cys249, Cys281-Cys341, Cys387-Cys445 in IgG1 Fc domain, were completely assigned with the demonstration of the same disulfide linkages between the Enbrel® and TuNEX® products. The data showed the higher order structure was preserved throughout the recombinant manufacturing processes and consistent between the two products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.