We investigate the
coupling of dipole resonances induced in a heteromaterial system composed
of a high-refractive-index nanoparticle and a highly reflective substrate.
A broad scattering signal and strong electric near-field enhancement
in the near-infrared region are generated by a hybrid Si nanoparticle
on a gold-film system under oblique illumination. Dark-field microscopy
investigations of the scattering signal measurement reveal the resonance
shifts of the dipole mode of silicon nanoparticles on gold films.
Further, the scattering signal is enhanced for p-polarized illumination
in the near-infrared region. The results indicate that the coupling
of Si nanoparticles on a gold-film system facilitates a possible application
for both surface-enhanced fluorescence and surface-enhanced Raman
scattering.
Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.
Near-field and far-field optical properties of plasmonic materials can be tailored by coupling the existing structures. However, fabricating 3D coupled structures in the solution by molecular linkers may suffer from low yield, low stability (particle aggregates), long reaction time, complex surface modification or multiple purification steps. In this report, stable 3D plasmonic core-satellite assemblies (CSA) with a ~1 nm interior gap accompanied by high field enhancement (|E/E|>200) are formed in a few seconds through a single polyelectrolyte linker layer. In addition, by covalently binding different reporter molecules and core particles, three distinct RamSSan tags based on this CSA backbone are demonstrated and compared with conventional fluorophores in terms of stability. This general assembly method can be applied to any type of colloidal particles carrying stable surface charge, even non-plasmonic nanoparticles. It will facilitate the development of various robust Raman tags for multiplexed biomedical imaging/sensing by efficiently combining constituent particles of differing size/shape/composition. The CSA backbone with an embedded high field not only makes the brightness of Raman tags more comparable to the fluorophores and can also be utilized in the platform of molecule-light quantum strong coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.